, лежит на биссектрисе( точке пересечения биссектрис)
ОА=3-перпендикуляр к RK=3, аналогично = ОМ =3,– перпендикуляр к SR ОВ =3 перпендикуляр к SK ( тк радиус пепендикулярен касательной
Т.к треугольник прямоугольный. То ОМRА- квадрат, МR=RА=3, Далее , тк. отрезки касательных, проведенных из одной точки равны, то SМ=SВ=х. АК= 15-3=12 и АК=АВ=12.
SR=х+3
SK=х+12
RK=15
Составляем уравнение по теореме пифагора (х+12)^{2} =15^{2}+(х+3)^{2}
раскрывем скобки, приводим подобные получаем 18х=90; х=5
Пусть О -цент вписанной окружности,
, лежит на биссектрисе( точке пересечения биссектрис)
ОА=3-перпендикуляр к RK=3, аналогично = ОМ =3,– перпендикуляр к SR ОВ =3 перпендикуляр к SK ( тк радиус пепендикулярен касательной
Т.к треугольник прямоугольный. То ОМRА- квадрат,
МR=RА=3, Далее , тк. отрезки касательных, проведенных из одной точки равны, то SМ=SВ=х. АК= 15-3=12 и АК=АВ=12.
SR=х+3
SK=х+12
RK=15
Составляем уравнение по теореме пифагора (х+12)^{2} =15^{2}+(х+3)^{2}
раскрывем скобки, приводим подобные получаем 18х=90; х=5
SR=х+3 =8
ответ 8