Прямоугольный участок размером 45×63 покрывается плитками 9×3. Можно ли покрыть этот участок ровными рядами плитками 7.5×3? 15×7? Обоснуйте свой ответ. Если да, то сколько плиток для этого потребуется?
1) хорда ba делит окружность на две дуги,одна из которых равна 126,диаметр ab делит окружность на две дуги,одна из которых равна 180,а другая x,наглядно видно,что получается три дуги - одна в 126 градусов,другая - в 180,третья - в x.сумма дуг окружностей равна 360 градусам,т.е 360-180-126=x=54,дуга ac равна 54,а вписанный угол abc равен,как известно,половине дуги,на которую он опирается,т.е угол abc=27. 2) хорда ab делит окружность на две дуги,одна равна 110,а другая - 250,вот эта большая дуга,равная 250,делится точкой c на две дуги - 12x и 13x (всегда можно записать пропорциональность в таком виде,например, в отношении 1/2 - это x и 2x) , т.е 25x=250,x=10,вписанный угол cab опирается на "дугу 13x",т.е на дугу,равную 130 градусам,т.е он равен 65 градусам.
Объяснение:
а) ∠1=37° , ∠7= 143°;
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-143°=37°
⇒ ∠1=∠8=37°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b
б) ∠1= ∠6
Но ∠6=∠8 - как вертикальные углы при двух пересекающихся прямых b и с.
⇒∠1=∠8
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с, а если соответственные углы равны, то прямые параллельны.
⇒ а ║ b
в) ∠1 = 45°, а ∠7 в три раза больше ∠3
∠1=∠3 - как вертикальные углы при двух пересекающихся прямых а и с.
⇒ ∠3=45°. ∠7=3*45°=135°
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-135°=45°
⇒∠1 = ∠8 = 45°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b