Прямоугольный участок размером 48х60 покрывается плитками 6x3. Можно ли по крыть этот участок ровными рядами плитками 9х2? 8х15? Обоснуйте свой ответ. Если да, то сколько плиток для этого потребуется?
1. Похила утворює з плошини кут 30 градусов. Знайти довжину похилої, якщо довжина перпендикуляра 7 см. Треуг - к прямоугольный, поэтому наклонная равна 7 * 2 = 14 см по свойс-ву катета против угла 30 град. 2. З точки до площини проведено похилі, довжини яких дорівнюють 13см і 15 см. Знайти довжину прекції другої похилої, якщо довжина проекції першої похилої 5см Якщо довжина проекції першої похилої 5см, а похила дорівнює13, Тоді перпендикуляр дорівнює за теоремою Пифагора 12 см. Розглядаючи другий трикутник за т. Піфагора проекція буде дорівнювати 9 см.
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.