АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
Основные определения
Формула для нахождения площади прямоугольного треугольника через катеты
Формула для нахождения площади прямоугольного треугольника через гипотенузу
Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол
Формулы нахождения площади прямоугольного треугольника через катет и угол
Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу
Поделиться статьей
АВТОР
Анастасия Белова
РУБРИКА
площадь, 8 класс
ДАТА ПУБЛИКАЦИИ
24.12.2020
ПРОСМОТРЫ
137430
Основные определения
Прямоугольный треугольник — это треугольник, в котором один угол прямой, то есть равен 90˚.
Гипотенуза — это сторона, противолежащая прямому углу.
Катеты — это стороны, прилежащие к прямому углу.
Прямоугольный треугольник
Чтобы найти площадь прямоугольного треугольника, можно применить любую формулу нахождения площади треугольника — их несколько.
Вебинар :
Если ребенок не хочет учиться: советы родителям
Записаться →
Формула для нахождения площади прямоугольного треугольника через катеты
Чтобы найти площадь, нужно вывести формулу:
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию.
S = 1/2 (a × h)
Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.
Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.
Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.
S = 1/2 (a × b), где a и b — катеты