Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Высота, проведенная из тупого угла равнобедренной трапеции, делит ее большее основание на ДВА отрезка, один из которых (больший), равен полусумме оснований, а второй (меньший) - их полуразности. Так как нам даны эти два отрезка, то их сумма - это большее основание. Итак, большее основание равно 8+26=34 см. Если полуразность оснований равна 8 см, а большее основание равно 34 см, тогда меньшее основание равно 34-2*8=18 см. ответ: в данной нам трапеции большее основание равно 34см, а меньшее - 18см.
Итак, большее основание равно 8+26=34 см. Если полуразность оснований равна 8 см, а большее основание равно 34 см, тогда меньшее основание равно 34-2*8=18 см.
ответ: в данной нам трапеции большее основание равно 34см,
а меньшее - 18см.