Прямые AC и BD пересекаются в точке Q. Точки A, B и C, D соответствуют параллельным плоскостям A и B. AQ: BQ = 5: 3, CQ = 12 м, BD = 30 м. Найдите длины отрезков AC и QD.
А)сечение EFGH строим в плоскости АВС прямую FG проходящую через О параллельно АВ строим в плоскости SCK прямую OL проходящую через О параллельно SC получаем точку L cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1 ОС относится к КО =2/1 треугольники FСG и AСB подобны FG/AB=2/3 FG=(2AB)/3=(2a)/3 OL параллельна SC SL/LK=2/1 треугольники SEH и SAB подобны EH/AB=2/3 EH=(2a)/3 SH/HB=GC/GB=2/1 HG=SС/3=b/3 также EF=b/3 P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.
строим в плоскости АВС прямую FG проходящую через О параллельно АВ
строим в плоскости SCK прямую OL проходящую через О параллельно SC
получаем точку L
cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ
соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1
ОС относится к КО =2/1
треугольники FСG и AСB подобны
FG/AB=2/3
FG=(2AB)/3=(2a)/3
OL параллельна SC
SL/LK=2/1
треугольники SEH и SAB подобны
EH/AB=2/3
EH=(2a)/3
SH/HB=GC/GB=2/1
HG=SС/3=b/3
также EF=b/3
P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3