Прямые АВ и СК взаимно перпендикулярны и пересекаются в точке О. Луч ОМ делит угол АОК на два угла, разность которых равна 24°. Найдите образовавшиеся углы АОМ и МОК.
ответ: 1) У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 2) хз 3)У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 4) ответ: Так (как написать придумаешь)
т.О — центр описанной около ∆ АВС окружности, ч.т.д.
Объяснение:
В ∆ АОС углы при основании АС равны. Следовательно, ∆ АОС –равнобедренный, и АО=ОС.
В ∆ АОВ отрезок ОМ⊥АВ и делит её пополам. ⇒
ОМ высота и медиана ∆ АОВ. ⇒ ∆ АОВ — равнобедренный, и
АО=ОВ. Отрезки АО=ОВ=ОС
Точки А, В и С находятся на одном и том же расстоянии от О, следовательно, принадлежат окружности, так как ей принадлежит множество точек плоскости, находящихся на одном и том же расстоянии от одной точки, следовательно
ответ: 1) У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 2) хз 3)У рівносторонньому трикутнику радіус вписаного кола у два рази більший за радіус описаного кола. Медіана рівностороннього трикутника дорівнює сумі радіусів описаного кола та вписаного кола. Медіана рівностороннього трикутника дорівнює сумі висоти та бісектриси трикутника. 4) ответ: Так (как написать придумаешь)
Объяснение:
т.О — центр описанной около ∆ АВС окружности, ч.т.д.
Объяснение:
В ∆ АОС углы при основании АС равны. Следовательно, ∆ АОС –равнобедренный, и АО=ОС.
В ∆ АОВ отрезок ОМ⊥АВ и делит её пополам. ⇒
ОМ высота и медиана ∆ АОВ. ⇒ ∆ АОВ — равнобедренный, и
АО=ОВ. Отрезки АО=ОВ=ОС
Точки А, В и С находятся на одном и том же расстоянии от О, следовательно, принадлежат окружности, так как ей принадлежит множество точек плоскости, находящихся на одном и том же расстоянии от одной точки, следовательно
(ответ сверху)