Рассмотрим ΔАВD. Он - прямоугольный, так как ВD⊥АВ⇒∠DВА=90°. Найдем ∠АDВ по теореме о сумме ∠Δ: ∠АDВ=180°-60°-90°=30° Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°. При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60° ⇒ АВСD - равнобедренная трапеция(по признаку) Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120° ∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120° ответ: 60°, 60°, 120°, 120°
Плоскость пересекает шар по кругу. Радиус r круга, по которому треугольник АВС пересекает шар с центром О, равен радиусу окружности, вписанной в данный прямоугольный треугольник.
Формула радиуса вписанной в прямоугольный треугольник окружности
r=(b-c):2
Второй катет можно найти по т.Пифагора, и можно обратить внимание на то, что треугольник "египетский" с отношением 3:4:5.
Отсюда АС=6 см.⇒
r=(8+6-10):2=2 (см)
Расстояние от плоскости треугольника до центра шара ОН=4.
∠АDВ=180°-60°-90°=30°
Рассмотрим ∠ВDА и ∠DВС, учитывая, что ВС∫∫АD(по определению трапеции): эти углы накрест лежащие при парал. прям. и сек. ⇒ они равны(по св-ву парал. прям) ⇒ ∠АDВ=∠СВD=30°.
При этом, ВD - так же биссектриса ∠D⇒∠АDВ=∠ВDС=30° ⇒ ∠D=60°
⇒ АВСD - равнобедренная трапеция(по признаку)
Найдем ∠DСВ. Рассмотрим ΔВСD: ∠В=∠D=30 ⇒ найдем ∠С по теореме о сумме ∠Δ: 180°-60°=120°
∠DCВ=∠АВС(по опр. равноб. трап.) ⇒ АВС=120°
ответ: 60°, 60°, 120°, 120°
Формула радиуса вписанной в прямоугольный треугольник окружности
r=(b-c):2
Второй катет можно найти по т.Пифагора, и можно обратить внимание на то, что треугольник "египетский" с отношением 3:4:5.
Отсюда АС=6 см.⇒
r=(8+6-10):2=2 (см)
Расстояние от плоскости треугольника до центра шара ОН=4.
Радиус R шара из ∆ ОНМ по т.Пифагора:
R=OМ=√(HO²+HM²)=√(16+4)=2√5 см