Прямые kl,mn и pq пересекаются в точке а угол кам=90градусов угол кар: угол маq=4: 5 один из образованных углов равен 80 два другие относятся как 2: 3 найдите наименьший из углов ран,lan и laq пошаговое решение
Рассмотрим прямоугольный треугольник АСМ. Гипотенуза АС=4 Катет СМ=2, значит ∠САМ=30°. Катет против угла в 30° равен половине гипотенузы. ∠САМ=∠ВАК=30° (АК-биссектриса и делит угол пополам), значит в треугольнике АВС ∠А=60°, ∠В=30° ( сумма острых углов прямоугольного треугольника равна 90°) В прямоугольном треугольнике АВС против угла в 30° лежит катет АС=4, значит гипотенуза АВ=8. В прямоугольном треугольнике АВК против угла ВАК, величина которого 30°, лежит катет ВК, равный половине гипотенузы АВ. ВК=4. О т в е т. 4.
1)Треугольники подобны ⇒ и у другого треугольника стороныотносятся как 3х/4х/5х. Большая сторона - 5х, и она равна 15.
15=5х
х=3
тогда первая сторона 3х=9, вторая 4х=12
Периметр равен:9+12+15=36
ответ:36
2)Больший катет лежит против большего отрезка гипотенузы. По свойству катет в прямоугольном треугольнике есть среднее геометрическое между гипотенузой (16+9=25см) и его проекцией на гипотенузу (16см)
Гипотенуза АС=4
Катет СМ=2, значит ∠САМ=30°.
Катет против угла в 30° равен половине гипотенузы.
∠САМ=∠ВАК=30° (АК-биссектриса и делит угол пополам), значит в треугольнике АВС ∠А=60°, ∠В=30° ( сумма острых углов прямоугольного треугольника равна 90°)
В прямоугольном треугольнике АВС против угла в 30° лежит катет АС=4, значит гипотенуза АВ=8.
В прямоугольном треугольнике АВК против угла ВАК, величина которого 30°, лежит катет ВК, равный половине гипотенузы АВ.
ВК=4.
О т в е т. 4.
1)Треугольники подобны ⇒ и у другого треугольника стороныотносятся как 3х/4х/5х. Большая сторона - 5х, и она равна 15.
15=5х
х=3
тогда первая сторона 3х=9, вторая 4х=12
Периметр равен:9+12+15=36
ответ:36
2)Больший катет лежит против большего отрезка гипотенузы. По свойству катет в прямоугольном треугольнике есть среднее геометрическое между гипотенузой (16+9=25см) и его проекцией на гипотенузу (16см)
х=√(25*16)=20см
ответ:20см
3)Рисунок внизу.
В ΔABD по теореме косинусов:
cosABC=(AB²+BD²-AD²)/(2AB*BD)=(16+1-12,25)/(2*4*1)=4,75/8
В ΔABC по теореме косинусов:
AC²=AB²+BC²-2*AB*BC*cosABC=16+256-2*4*16*4,75/8=196
AC=14
ответ:14