Прямоугольный треугольник - это треугольник в котором один из углов прямой, т.е. равен 90° Две стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла называется гипотенуза. Причем гипотенуза всегда больше любого из катетов. Свойства прямоугольного треугольника: 1. Катет, лежажий против угла в 30° равен половине гипотенузы. 2. Медиана, проведенная к гипотенузе, равна половине гипотенузы. 3. Сумма двух острых углов прямоугольного треугольника равна 90°
Признаки равенства прямоугольных треугольников: 1. По двум катетам (Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны) 2. По катету и гипотенузе (Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны) 3. По катету и острому углу (Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны) 4. По гипотенузе и острому углу (Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны)
Площадь прямоугольного треугольника равна половине произведения его катетов.
Теорема, обратная теореме Пифагора: Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
P.S. говоря об элементах треугольника в 8 классе учителя математики часто задают заполнить таблицу, где присутствуют такие элементы прямоугольного треугольника как a-катет, b-катет, c-гипотенуза, h-высота , и -проекции катетов на гипотенузу. Формулы их нахождения и рисунок прилагаю в виде картинки.
1) Вот рисунок 1. Углы при основании равнобедренного треугольника a. Угол при вершине b. Биссектриса разбивает угол при основании на два угла a/2. И она пересекает сторону под углом α. Получается треугольник ABD, у которого углы равны a, a, a/2. a + a + a/2 = 180° 2a + 2a + a = 360° 5a = 360° a = 360°/5 = 72° b = 180° - a - a = 180° - 72° - 72° = 36°. ответ: 72°, 72°, 36°.
2) а) Пусть две биссектрисы выходят из основания треугольника. Тогда основание и биссектрисы образуют маленький треугольник, у которого тупой угол 135°. Тогда сумма двух остальных углов равна 180° - 135° = 45°. Но ведь эти углы - есть половины углов большого треугольника. Значит, эти два угла большого треугольника в сумме равны 2*45° = 90°. Значит, третий угол большого треугольника равен 90°, то есть прямой. Таким образом, большой треугольник - прямоугольный.
б) Пусть острый угол пересечения биссектрис равен а, тогда тупой 180°-а. Значит, сумма углов в маленьком треугольнике b1 + b2 = 180° - (180° - а) = а. Но эти маленькие углы есть половины от углов большого треугольника. Поэтому сумма двух углов большого треугольника равна 2а. 2*b1 + 2*b2 = 2a Значит, третий угол большого треугольника равен 180° - 2а. А внешний угол к этому углу равен, соответственно, 2а. То есть вдвое больше, чем острый угол а между биссектрисами.
Оба случая - а) и б) - показаны на 2 рисунке. Для случая а) тупой угол между биссектрисами 180° - a = 135°.
Две стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла называется гипотенуза. Причем гипотенуза всегда больше любого из катетов.
Свойства прямоугольного треугольника:
1. Катет, лежажий против угла в 30° равен половине гипотенузы.
2. Медиана, проведенная к гипотенузе, равна половине гипотенузы.
3. Сумма двух острых углов прямоугольного треугольника равна 90°
Признаки равенства прямоугольных треугольников:
1. По двум катетам (Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны)
2. По катету и гипотенузе (Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны)
3. По катету и острому углу (Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны)
4. По гипотенузе и острому углу (Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны)
Площадь прямоугольного треугольника равна половине произведения его катетов.
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Теорема, обратная теореме Пифагора:
Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
P.S. говоря об элементах треугольника в 8 классе учителя математики часто задают заполнить таблицу, где присутствуют такие элементы прямоугольного треугольника как a-катет, b-катет, c-гипотенуза, h-высота , и -проекции катетов на гипотенузу. Формулы их нахождения и рисунок прилагаю в виде картинки.
Угол при вершине b.
Биссектриса разбивает угол при основании на два угла a/2.
И она пересекает сторону под углом α. Получается треугольник ABD, у которого углы равны a, a, a/2.
a + a + a/2 = 180°
2a + 2a + a = 360°
5a = 360°
a = 360°/5 = 72°
b = 180° - a - a = 180° - 72° - 72° = 36°.
ответ: 72°, 72°, 36°.
2) а) Пусть две биссектрисы выходят из основания треугольника.
Тогда основание и биссектрисы образуют маленький треугольник, у которого тупой угол 135°. Тогда сумма двух остальных углов равна
180° - 135° = 45°.
Но ведь эти углы - есть половины углов большого треугольника.
Значит, эти два угла большого треугольника в сумме равны 2*45° = 90°.
Значит, третий угол большого треугольника равен 90°, то есть прямой.
Таким образом, большой треугольник - прямоугольный.
б) Пусть острый угол пересечения биссектрис равен а, тогда тупой 180°-а.
Значит, сумма углов в маленьком треугольнике
b1 + b2 = 180° - (180° - а) = а.
Но эти маленькие углы есть половины от углов большого треугольника.
Поэтому сумма двух углов большого треугольника равна 2а.
2*b1 + 2*b2 = 2a
Значит, третий угол большого треугольника равен 180° - 2а.
А внешний угол к этому углу равен, соответственно, 2а.
То есть вдвое больше, чем острый угол а между биссектрисами.
Оба случая - а) и б) - показаны на 2 рисунке.
Для случая а) тупой угол между биссектрисами 180° - a = 135°.