В правильную 4-х угольную усеченную пирамиду вписан куб так, что одна из граней куба совпадает с меньшим основанием усеченной пирамиды , а противоположная грань куба лежит на большем основании усеченной пирамиды . Ребро куба равно a , сторона меньшего основания усеченной пирамиды в 2 раза меньше стороны большего основания .Найдите площадь боковой поверхности усеченной пирамиды
Объяснение:
Т.к. одна из граней куба совпадает с меньшим основанием усеченной пирамиды, то сторона верхнего основания равна а ⇒ сторона большего основания усеченной пирамиды 2а.
Т.к. усеченная пирамида правильная , то боковые грани равнобедренные трапеции.
S( бок. усеч. пир.)=4S( трапеции)=4*1/2*h*(a+2a). Найдем высоту из прямоугольной трапеции ОО₁Р₁Р .
Точка О₁-точка пересечения диагоналей квадрата, поэтому О₁Р₁= Пусть Р₁К⊥ОР, тогда КР=а- =
обозначим точку пересечения секущей с m буквой о, а биссектрису большего угла буквой n.
оn делит его на два равных угла, и половина его с острым углом составляет
94 градуса.
отсюда вторая половина ( половина закрашенного розовым цветом угла) равна 180 - 94=86 градусов.
весь тупой угол равен 86*2=172 градуса.
с острым углом он составляет развернутый угол и поэтому
острый угол равен 8 градусов.
так как прямые m и n параллельны, секущая со второй прямой образует углы той же градусной меры.
т.е. тупые углы равны 172 градуса, острые - 8 градусов.
В правильную 4-х угольную усеченную пирамиду вписан куб так, что одна из граней куба совпадает с меньшим основанием усеченной пирамиды , а противоположная грань куба лежит на большем основании усеченной пирамиды . Ребро куба равно a , сторона меньшего основания усеченной пирамиды в 2 раза меньше стороны большего основания .Найдите площадь боковой поверхности усеченной пирамиды
Объяснение:
Т.к. одна из граней куба совпадает с меньшим основанием усеченной пирамиды, то сторона верхнего основания равна а ⇒ сторона большего основания усеченной пирамиды 2а.
Т.к. усеченная пирамида правильная , то боковые грани равнобедренные трапеции.
S( бок. усеч. пир.)=4S( трапеции)=4*1/2*h*(a+2a). Найдем высоту из прямоугольной трапеции ОО₁Р₁Р .
Точка О₁-точка пересечения диагоналей квадрата, поэтому О₁Р₁= Пусть Р₁К⊥ОР, тогда КР=а- =
Из ΔКРР₁ по т. Пифагора Р₁К=√(а²+( )²)=а√ = .
S( бок. усеч. пир.)=4* * *(a+2a)=3a²√5 (ед²).