Прямые pp и qq — серединные перпендикуляры к отрезкам ABAB и BCBC. Докажите, что AO=OCAO=OC
Доказательство:
(Варианты ответов , которые надо вставить вместо многоточий ) :
не пересекаются, PC, BP, AC, OP, отрезку,OC, перпендикуляр, OB, OC, OC, OA, высота, серединный, параллельны.
Так как прямая p —
перпендикуляр к AB,
то AO=
Аналогично, так как прямая q — серединный
к отрезку BC, то OB=
Итак, AO=OB=
, поэтому AO=
, что и требовалось доказать.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Нарисуем треугольник АСВ, проведем высоту СН и медиану СМ.
Пусть каждый из получившихся углов при С равен а.
В ∆ АСМ высота СН делит угол С пополам. ⇒ СН не только высота, но и биссектриса ∆ АСМ, это свойство равнобедренного треугольника.
∆ АСМ равнобедренный, АС=СМ, и АН=МН.
АМ=2 МН.
По условию АМ=ВМ.⇒ ВМ=2 МН
НМ:МВ=1/2
В ∆ СНВ отрезок СМ - биссектриса угла НСВ.
По свойству биссектрисы СН:СВ=1/2⇒СВ=2 СН.
Но ∆ СНВ - прямоугольный, СН - катет.
Катет равен половине гипотенузы, ⇒ он противолежит углу 30º
∠СВН=30º
∠НСВ=90º-30º=60º⇒
2а=60º
a=30º,
∠АСВ=3a=90º
∠CАВ=90-30º=60º