1. Т.к один из углов прямоугольного треугольника равен 60°, то другой острый угол равен 30°.
Мы помним, что ".. напротив меньшего угла меньшая сторона." => меньшая сторона (катет) находится напротив угла в 30°. Мы помним, что "катет напротив 30° равен половине гипотинузы..". Значит этот катет равен половине гипотинузы, но мы знаем что *гипотинуза* + *меньший катет* = 18 и как же нам быть?
Из выше написанного мной, мы понимаем, что в соотношении *гипотинуза* равна 2-м катетам (меньшим катетам) => 2*меньших катета* + *меньший катет* = 18
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
1. Т.к один из углов прямоугольного треугольника равен 60°, то другой острый угол равен 30°.
Мы помним, что ".. напротив меньшего угла меньшая сторона." => меньшая сторона (катет) находится напротив угла в 30°. Мы помним, что "катет напротив 30° равен половине гипотинузы..". Значит этот катет равен половине гипотинузы, но мы знаем что *гипотинуза* + *меньший катет* = 18 и как же нам быть?
Из выше написанного мной, мы понимаем, что в соотношении *гипотинуза* равна 2-м катетам (меньшим катетам) => 2*меньших катета* + *меньший катет* = 18
3*меньших катета* = 18
*меньший катет*= 18:3=6
=> гипотинуза равна 2*6=12
*Меньший катет* = 6
*Меньший катет* = 6*гипотинуза* = 12
2. доказ-во:
< ACM = KCM (т.к CM - биссектриса <BCD)
рассм ∆CAM и ∆CKM - прямоугольные
∆СAM=∆CKM по общей гипотинузе и острому углу
=> MA=MK
ЧТД
Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам.
В правильном треугольнике высота является также медианой и биссектрисой.
Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис.
Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R).
R= h·2/3
R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2.
S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
S= 3п (см^2)
a= √(3·3п/п) <=> a= 3 (см)