Пусть А и В — промежутки на координатной прямой. Их объеди нением называют множество всех таких точек, каждая из ко-
торых принадлежит хотя бы одному из данных промежутков.
Обозначают объединение так: Аов (например, если A =
В = [1; 3], то AUB = [0; 3]). Найдите AUB, если:
а) А = (0; 1), B = [1; 3);
б) А = [-2,5; 3], B = [0; 1]
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см