Пусть даны многоугольники F¹ и F². Пусть их размеры равны 6 см³ и 24 см³ соответственно. Затем: найдите объем их объединения, когда многогранники не пересекаются.
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника. Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами. Следовательно, данный треугольник - равносторонний. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины. Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2) Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности. Обозначим сторону треугольника а. а:2=3:2 2а=6 а=3 см Периметр - сумма длин всех трех сторон треугольника. Р=3•3=9 cм ---------- Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.
Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника.
Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами.
Следовательно, данный треугольник - равносторонний.
Медианы треугольника пересекаются в одной точке. Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия 3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2)
Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности.
Обозначим сторону треугольника а.
а:2=3:2
2а=6
а=3 см
Периметр - сумма длин всех трех сторон треугольника.
Р=3•3=9 cм
----------
Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.
а) 332,8 см².
б) 24+4√2 дм; 40 дм².
Объяснение:
а) ABCD - трапеция. СЕ - высота. В ΔCED ∠D=60*, ∠CED=90*, ∠ECD=30*.
MN=16 см - средняя линия. Высота СЕ делит ее на отрезка MK=10 см и KN=6 см (16-10=6 см).
KN является средней линией треугольника CED и равна половине основания ЕВ. Следовательно ED=2KN=2*6=12 см.
Найдем высоту СЕ=h= 12/tg30* = 12 / 0.577 =20.8 см.
S=h*MN=20,8*16=332,8 см ² .
***
б) ABCD - трапеция. ∠С=135*. СЕ - высота делит угол С на 2 угла 135*=90*+45*. Следовательно Δ CDE - равнобедренный СЕ=ED=12-8=4 дм.
Найдем СD=√CE²+DE² =√4²+4²= 4√2 дм.
Периметр Р=АВ+ВС+CD+AD=4+8+4√2+12= 24+4√2 дм.
Площадь равна S= h(a+b)/2=4(12+8)/2=40 дм ².