Пусть прямоугольник PQRS вписан в прямоугольник ABCD, точки расположены, как показано на рисунке. Выберите все верные утверждения. Если ABCD является квадратом, то и PQRS является квадратом
Если PQRS является квадратом, то и ABCD является квадратом
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°
Обозначим расстояние от точки С до плоскости СН, а расстояние до плоскости от точки В - ВН1. Рассмотрим полученные треугольники ВОН1 и СОН. Они подобны, поскольку СН и ВН1 перпендикулярны плоскости и соответственно параллельны, поэтому стороны ∆ВОН1 и ∆СОН пропорциональны. Составим пропорцию:
СО/ВО=СН/ВН1
СО×ВН1=ВО×СН
6×ВН1=10×3
6ВН1=30
ВН1=30÷6
ВН1=5
ОТВЕТ: ВН1=5ЗАДАНИЕ 2
Обозначим вершины сечения КМЕ. Грань АВД пропорциональна сечению КМЕ, поскольку они параллельны. Так как части ребра ДС делятся в соотношении 2/3, то целое ребро ДС будет иметь коэффициент 2+3=5, поэтому МС/ДС=3/5. Соотношение площадей равно k²=(3/5)². Пусть площадь грани АВД=х, и зная коэффициент и площадь сечения составим пропорцию:
угол КВО=45°
Объяснение:
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°
Объяснение:
ЗАДАНИЕ 1Обозначим расстояние от точки С до плоскости СН, а расстояние до плоскости от точки В - ВН1. Рассмотрим полученные треугольники ВОН1 и СОН. Они подобны, поскольку СН и ВН1 перпендикулярны плоскости и соответственно параллельны, поэтому стороны ∆ВОН1 и ∆СОН пропорциональны. Составим пропорцию:
СО/ВО=СН/ВН1
СО×ВН1=ВО×СН
6×ВН1=10×3
6ВН1=30
ВН1=30÷6
ВН1=5
ОТВЕТ: ВН1=5ЗАДАНИЕ 2Обозначим вершины сечения КМЕ. Грань АВД пропорциональна сечению КМЕ, поскольку они параллельны. Так как части ребра ДС делятся в соотношении 2/3, то целое ребро ДС будет иметь коэффициент 2+3=5, поэтому МС/ДС=3/5. Соотношение площадей равно k²=(3/5)². Пусть площадь грани АВД=х, и зная коэффициент и площадь сечения составим пропорцию:
45/х=(3/5)²
45/х=9/25
9х=45×25
9х=1125
х=1125÷9
х=125
ответ: SАВД=125(ед²)