Річ 10. Із точки до площини проведено дві похилі. Знайдіть довжини по- KUTIX. SIELO: 1) одна з них на 26 см більша від другої, а проекції похилих до- рівнюють 12 см і 40 см; 2) похилі відносяться як 1:2, а проекції похилих дорівнюють 1 см і 7 см
Треугольник АВС с прямым углом А. АН - высота, опущенная из прямого угла на гипотенузу, которая делит прямоугольный треугольник на два подобных друг другу и исходному. Катет АВ = 10(дано), ВН - 8 (проекция этого катета на гипотенузу) Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10. Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм. По Пифагору АН = √(АВ²-ВН²) = 6дм. АС = √(АН²+НС²) = 7,5дм Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.
Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10.
Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм.
По Пифагору АН = √(АВ²-ВН²) = 6дм.
АС = √(АН²+НС²) = 7,5дм
Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S
после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.
основание ABCD - параллелограмм ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ;
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -?
---
Известно: AC²+BD² = 2(AB²+BC²)
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS по теореме Пифагора :
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см).
* * * диагонали параллелограммы в точке пересечения делятся пополам * * *
ответ: SA =SC = 6 см SB=SD =5 см.