Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
Смежные углы параллелограмма в сумме равны 180 гр. Если один в 5 раз больше другого, то это 30 и 150 гр. Диагональ это высота, значит, она делит угол 150 на 60 и 90. Вот я нарисовал. Если диагональ - высота равна d1, углы BAD = 30, ADB = 60 AD = b = d1/sin 30 = 2d1; AB = a = bcos 30 = 2d1*√3/2 = d1*√3 Угол ADC = 150. По теореме косинусов в треугольнике ADC AC^2 = AD^2 + CD^2 - 2*AD*CD*cos ADC = = b^2+a^2-2a*b*cos 150 = 4d1^2 + 3d1^2 - 2*2d1*d1*√3(-√3/2) = = 7d1^2 + 4d1^2*3/2 = 7d1^2 + 6d1^2 = 13d1^2 AC = d1*√13 Отношение диагоналей равно AC : BD = d1*√13 / d1 = √13
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Если один в 5 раз больше другого, то это 30 и 150 гр.
Диагональ это высота, значит, она делит угол 150 на 60 и 90.
Вот я нарисовал.
Если диагональ - высота равна d1, углы BAD = 30, ADB = 60
AD = b = d1/sin 30 = 2d1; AB = a = bcos 30 = 2d1*√3/2 = d1*√3
Угол ADC = 150. По теореме косинусов в треугольнике ADC
AC^2 = AD^2 + CD^2 - 2*AD*CD*cos ADC =
= b^2+a^2-2a*b*cos 150 = 4d1^2 + 3d1^2 - 2*2d1*d1*√3(-√3/2) =
= 7d1^2 + 4d1^2*3/2 = 7d1^2 + 6d1^2 = 13d1^2
AC = d1*√13
Отношение диагоналей равно
AC : BD = d1*√13 / d1 = √13