Рівні прямокутники ABCD і ABC1D1 лежать у перпендикулярних площинах. Знайдіть відстань між мимобіжними прямими AD1 і С1D , якщо АВ=15 см, ВС=20 смРівні прямокутники ABCD і ABC1D1 лежать у перпендикулярних площинах. Знайдіть відстань між мимобіжними прямими AD1 і С1D , якщо АВ=15 см, ВС=20 см
26
Объяснение:
1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
S = 13 · 2 = 26
КМ= 1/2ВВ1.
Найдем ВВ1. Рассмотрим треугольник ВА1О. Он прямоугольный, т.к. в равнобедренном треугольнике АВС медиана АА1, проведенная к основанию ВС, является также и высотой.
ВА1=32:2=16 см.
ОА1 можно найти, пользуясь свойством медиан: медианы треугольника пересекаются в одной точке, которая делит кажду медиану в отношении 2 : 1, считая от вершины, т.е.
АО : ОА1 = 2 : 1, отсюда ОА1 = АО : 2 = 24 : 2 = 12 см.
Используя теорему Пифагора, находим ВО в треугольнике ВА1О:
ВО = √BA1²+OA1²=√256+144=√400=20 см.
Снова используем свойство пересекающихся медиан:
ВО : ОВ1 = 2 : 1, отсюда ОВ1 = ВО : 2 = 20 : 2 = 10 см.
ВВ1=ВО+ОВ1=20+10=30 см. Значит
КМ=1/2ВВ1=1/2*30=15 см