Рівнобічну трапецію, один із кутів якої дорівнює 130 градусів вписано в коло. кут між діагоналями трапеції, що ледить проти бічної сторони, дорівнює 80 градусів. знайдіть положення центра кола описаного довкола трапеції відносно трапеції
Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}8
2
. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8
(8
2
)
2
−8
2
=8 . Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10
Попытаюсь решить на уровне 9 класса.
Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}8
2
. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8
(8
2
)
2
−8
2
=8 . Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10
6
2
+8
2
=10
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5