Так как отрезок MN параллелен стороне AC и пересекает стороны треугольника AB и BC, то углы, прилежащие к отрезку MN и к стороне треугольника AC равны- это признак подобия двух треугольников: ABC и MBN. AC/MN=51/17=3 Отношение треугольника MBN к ABC= 1/3, так как треугольники подобны, то между их сторонами такое же отношение 1 к 3. Чтобы найти сторону, нужно BC/3 BC-? найдём с уравнения: Пусть "x"= длине BC, тогда BN="x/3", так как остальная часть равна 32, то уравнение будет таким: x/3+32=x; Приведя уравнение к общему знаменателю "3", оно будет таким: (x+32*3)/3=3x/3; От знаменателя можно избавится x+96=3x; 2x=96; x=96/2=48. 48/3=16 длина MN. ответ: MN=16.
AC/MN=51/17=3 Отношение треугольника MBN к ABC= 1/3, так как треугольники подобны, то между их сторонами такое же отношение 1 к 3.
Чтобы найти сторону, нужно BC/3 BC-? найдём с уравнения:
Пусть "x"= длине BC, тогда BN="x/3", так как остальная часть равна 32, то уравнение будет таким:
x/3+32=x;
Приведя уравнение к общему знаменателю "3", оно будет таким:
(x+32*3)/3=3x/3; От знаменателя можно избавится
x+96=3x; 2x=96; x=96/2=48.
48/3=16 длина MN.
ответ: MN=16.
В треугольнике ABC ∠С = 90°, AB = 5, tgA = 7/24. Найдите AC.
===========================================================
▪Первый теорема Пифагора ):tgA = BC/AC = 7/24Пусть ВС = 7х, АС = 24х, тогда Применим теорему Пифагора:АС² + ВС² = АВ²( 24х )² + ( 7х )² = 5²576х² + 49х² = 25625х² = 25х² = 1/25 ⇒ х = 1/5 = 0,2 Значит, АС = 24х = 24•0,2 = 4,8▪Второй Тригонометрия ):tg²A + 1 = 1/cos²Acos²A = 1/( tg²A + 1 ) = 1/( (7/24)² + 1 ) = 1/( 625/576 ) = 576/625cosA = ± 24/25 ⇒ ∠A - острый ⇒ cosA = 24/25cosA = AC/AB = 24/25 ⇒ AC = ( 5 • 24 )/25 = 24/5 = 4,8ОТВЕТ: 4,8