Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
1. Запишем формулу площади ромба:
S=a^2 * sinA=10^2 *sin120
По формулам приведения заменим синус 120:
sin120=sin(180-120)=sin60
S=10^2 * sin60
[tex]S}=100*\frac{\sqrt{3}{2}=50\sqrt{3}
2. По теореме косинусов:(рисунок во влажении)
LM^2=KM^2+K^2 -2KM*KL*cosK
9=16+4-2*2*4*cosK
-16cosK=9-20
cosK=11/16
ответ: 11/16
3. По теореме о сумме внутренних односторонних углах треугольника найдём угол ABC при BC//AD и АB-секущая.
ABC=180-BAD=180-60=120
Т.к. BM-биссектрисса, то угол ABM=120/2=60
По теореме о сумме углов треуголника найдём угол AMB в треугольнике BAM:
AMB=180-60-60=60
Значит треугольник ABM - равносторонний, следовательно MB=AB=AM=8
Запишем формулу периметра для ABCD.
P=2(AB+AD)
Обозначим отрезок MD за х, тогда AD=AM+MD=8+x
40=2(8+8+x)
20=16+x
x=4
Значит BMDC-трапеция.
Запишем формулу периметра трапеции:
P=a+b+c+d=(8+4)+8+8+4=32. Рисунок во влажении