1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²
а)ИЗ треугольника AOS(угол О=90 град.): SA = SO:cosSAO = sqrt(6): cos60 = sqrt(6):0,5 = 2sqrt(6).
б) Sбок = Pl / 2.
Необходимо найти апофему l и сторону основания.
ИЗ треугольника AOS(угол О=90 град.): ОА=SO: tg SAO = sqrt(6): sqrt(3)=sqrt(2)/
ОА - половина диагонали квадрата АВСD. Тогда вся диагональ АС = 2sqrt(2). Посвойству правильного 4-х угольника, сторона квадрата в sqrt(2)рах меньше его диагонали. Тогда а=АВ=2.
Р = 4а = 4*2=8
Пусть SК - апофема l. ОК - проекция апофемы на плоскость основания. ОК = 0,5 АВ = 2:2=1. Из треугольника SOK (угол SOK = 90 град)по теореме Пифагора: SK= sqrt(6+1)=sqrt(7)
Sбок = 8*sqrt(7) / 2 = 4sqrt(7).
Объяснение: