Рассмотрим получившиеся треугольники AOD и АО1В. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого: <AOD=<AO1B=20° по условию; < A - общий Значит, <ADO=<ABO1 (это углы B и D в четырехугольнике) Пусть общий для обоих треугольников AOD и АО1В угол А будет х. Выразим неизвестные углы ADO и ABO1, зная, что сумма углов треугольника равна 180°: <ADO=<ABO1=180-(<A+20)=160-<A=160-x (<D=<B=160-x) Рассмотрим четырехугольник ABCD. Зная сумму его углов, выразим угол С:<C=360-(<A+<B+<D)=360-(x+160-x+160-x)=40+х. Т.е.<C=40+<A (поскольку за х мы принимали угол А). Таким образом, мы видим, что разница между углами С и А равна 40 градусов.
Т.к. средняя линия треугольника параллельна основанию и равна его половине(исходя из подобиятреугольников), то каждая сторона данного треугольника в 2 раза больше образованного средними линиями, а значит, и периметр в 2 раза больше, значит, периметр большого треугольника равен 11*2=22 см
Т.к. в р/б треугольнике две стороны равны, то обозначим их за х см, сторона основания меньше боковой стороны, значит будет (х-2) см, тогда:
Р=х+х+х-2=22 3х=24 х=8 см - это боковая сторона 8-2=6 см - это основание. ответ: стороны равны 8, 8 и 6 см.
<AOD=<AO1B=20° по условию;
< A - общий
Значит, <ADO=<ABO1 (это углы B и D в четырехугольнике)
Пусть общий для обоих треугольников AOD и АО1В угол А будет х. Выразим неизвестные углы ADO и ABO1, зная, что сумма углов треугольника равна 180°:
<ADO=<ABO1=180-(<A+20)=160-<A=160-x (<D=<B=160-x)
Рассмотрим четырехугольник ABCD. Зная сумму его углов, выразим угол С:<C=360-(<A+<B+<D)=360-(x+160-x+160-x)=40+х.
Т.е.<C=40+<A (поскольку за х мы принимали угол А). Таким образом, мы видим, что разница между углами С и А равна 40 градусов.
11*2=22 см
Т.к. в р/б треугольнике две стороны равны, то обозначим их за х см, сторона основания меньше боковой стороны, значит будет (х-2) см, тогда:
Р=х+х+х-2=22
3х=24
х=8 см - это боковая сторона
8-2=6 см - это основание.
ответ: стороны равны 8, 8 и 6 см.