В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
влад2317
влад2317
19.01.2020 03:33 •  Геометрия

Радіус кола описаного навколо правильного шестикутника дорівнює 13 см

Показать ответ
Ответ:
aeraerororrrrea
aeraerororrrrea
16.11.2021 07:50
Точки Р,  Т лежат на серединном перпендикуляре РТ,  значит они удалены от концов отрезка АС,  т.е.  АР=РС,  АТ=ТС
<ВАР=30⁰,  <APB = 60⁰  в   треугольнике  АВР.   Смежный угол  <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС  по доказанному),  РО - высота,  медиана,  биссектриса,  т.е. <АРО=<СРО=60⁰,  <РАО=30⁰  (сумма углов треугольника равна 180⁰)
<ВАД=90⁰,    <ВАР=30⁰,    <РАС=30⁰    <ОАТ=90-(30+30)=30⁰,  значит <РАТ=60⁹
Получили,  треугольник АРТ - равносторонний,  т.к.  <P=<A=<t=60⁰
Значит,  РТ=АР=АТ=8см,    Р(АРСТ)=8*4=32(см)
ответ:32см
0,0(0 оценок)
Ответ:
00LenaVaganova11
00LenaVaganova11
29.10.2020 23:19
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим \triangle ABC. Из условия ясно, что он — прямоугольный (так как \angle C = 90^{\circ}). AB = 6 cm — гипотенуза, AC — искомый катет, tg \angle A = 2\sqrt{2}
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: tg \angle A = \frac{BC}{AC}
Отсюда: AC = \frac{BC}{tg \angle A}
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
AB^2 = AC^2 + BC^2
Как мы выяснили чуть выше AC = \frac{BC}{tg \angle A}.
Заменяем и получаем:
AB^2 = (\frac{BC}{tg \angle A})^2 + BC^2
Немного поколдуем:
AB^2 = \frac{BC^2}{tg^2 \angle A} + BC^2 \\ &#10;AB^2 = \frac{BC^2 + BC^2 \cdot tg^2 \angle A}{tg^2 \angle A} \\ &#10;AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\
Отсюда найдем BC:
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\ &#10;BC^2 = \frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A} \\ &#10;BC = \sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}
Теперь напомню зачем нам нужно было BC:
AC = \frac{BC}{tg \angle A}
Подставляем вместо BC новую подстановку:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A}
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
tg \angle A = 2\sqrt{2}, AB = 6 cm
Найдем, наконец, AC:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A} = \frac{\sqrt{\frac{(6 cm)^2 \cdot (2\sqrt{2})^2}{1+(2\sqrt{2})^2}}}{2\sqrt{2}} = \frac{\sqrt{\frac{36 cm^2 \cdot 8}{1+8}}}{2\sqrt{2}} =
= \frac{\sqrt{32 cm^2}}{2\sqrt{2}} = \sqrt{\frac{32}{2} cm^2} \cdot \frac{1}{2} = \sqrt{16 cm^2} \cdot \frac{1}{2} = 4 cm \cdot \frac{1}{2} = 2 cm
Это ответ.

Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота