Радіус однієї з основ зрізаного конуса в 4 рази більший за радіус другої основи. Висота зрізаного конуса дорівнює 8 см, а діагональ його осьовогу перерізу 17 см. Знайдіть об'єм зрізанного конуса
Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Объяснение:Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Решение: Опустим высоту из вершины меньшего основания на большее, она отсекает от трапеции прямоугольный треугольник с щстрым углом 30°. Тогда высота трапеции равна h=4/2=2 По т. Пифагора гаходим второй катет этого треугольника: b=√(16-4)=2√3 Тогда площадь трапеции равна: S=1/2*(3+3+2√3)*2=6+2√3 В принципе, из рисунка хорошо видно, что площадь можно искать, как сумму площадей прямоугольника и прямоугольного треугольника. (Если даже не знать, что площадь трапеции равна произведению полусуммы оснований на высоту.)
Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Объяснение:Николай Алексеевич Некрасов (1821 — 1877(78)) – классик русской поэзии, писатель и публицист. Он был революционным демократом, редактором и издателем журнала «Современник» (1847-1866) и редактором журнала «Отечественные записки» (1868). Одним из самых главных и известных произведений писателя является поэма «Кому на Руси жить хорошо».
Опустим высоту из вершины меньшего основания на большее, она отсекает от трапеции прямоугольный треугольник с щстрым углом 30°. Тогда высота трапеции равна h=4/2=2
По т. Пифагора гаходим второй катет этого треугольника: b=√(16-4)=2√3
Тогда площадь трапеции равна: S=1/2*(3+3+2√3)*2=6+2√3 В принципе, из рисунка хорошо видно, что площадь можно искать, как сумму площадей прямоугольника и прямоугольного треугольника. (Если даже не знать, что площадь трапеции равна произведению полусуммы оснований на высоту.)