Радіус основи циліндра дорівнює 10 см. Паралельно осі циліндра побудовано переріз, площа якого дорівнює 64 см^2 .Знайдіть висоту циліндра, якщо відстань від площини перерізу до осі дорівнює 6 см.
Так как вектор m противоположно направлен вектору b, то вектор m равен число (-p) умноженое на вектор b. Вектор m будет иметь координаты b(-2p;-2p). вектор m имеет туже длину, что и вектор a. Длинна вектора a равна корень квадратный из 2 в степени 2+2 в степени 2, тоесть равна 2 умноженое на крень из 2. Длинна вектора m равна корню квдаратному из (-2p) в квадрате+(-2p) в квадрате, тоесть равно 2корень из 2 умноженое на p 2 корень из 2 умноженое на p равно 2 корень из 2 p равно 1 значит вектор m имеет координаты (-2;-2)
Нормальный вектор заданной плоскости и будет направляющим вектором для заданной прямой.
Находим нормальный вектор как результат векторного произведения АВ х АС.
АВ: (-1; 1; 3), АС: (2; 2; -1).
i j k | i j
-1 1 3 | -1 1
2 2 -1 | 2 2 = -1i + 6j -2k -1j - 6i - 2k =
= -7i + 5j - 4k = (-7; 5; -4).
Теперь подставляем координаты точки М и получаем уравнение.
(x - 1)/(-7) = (y - 2)/5 = (z - 3)/(-4).
(-p) умноженое на вектор b. Вектор m будет иметь координаты b(-2p;-2p).
вектор m имеет туже длину, что и вектор a. Длинна вектора a равна корень квадратный из 2 в степени 2+2 в степени 2, тоесть равна 2 умноженое на крень из 2.
Длинна вектора m равна корню квдаратному из (-2p) в квадрате+(-2p) в квадрате, тоесть равно 2корень из 2 умноженое на p
2 корень из 2 умноженое на p равно 2 корень из 2
p равно 1
значит вектор m имеет координаты (-2;-2)