Теория: диагонали ромба - перпендикулярны - точкой пересечения делятся пополам Начертите ромб, проведите диагонали, по рис. будет видно, что диагонали делят ромб на четыре прямоугольных треугольника (поскольку диагонали ромба перпендикулярны). Рассмотрим один из них. Нам известно: сторона ромба, в прямоугольном треугольнике это гипотенуза, катет =5 см. (10:2). Значит можем найти второй катет: а²=с²-b² a²=13²-5²=144=12² Нашли половину второй диагонали, вся диагональ - 12*2=24 ответ: вторая диагональ 24 см.
Пусть ABCD - параллелограмм, AK и DK - биссектрисы углов A и D, при этом K лежит на BC. Обозначим углы A и C за 2x, углы B и D за 2y. Заметим, что 2x+2y=180 (сумма смежных углов параллелограмма равна 180 градусам), а x+y=90. Рассмотрим треугольник ABK. В нём угол KAB равен x, угол ABK равен 2y. Так как сумма всех углов равна 180=2x+2y, третий угол - BKA - равен x. Значит, треугольник ABK равнобедренный и AB=BK. Аналогично, рассмотрим треугольник KCD, в нём угол DKC равен y, так как угол CDK равен y, а угол KCD равен 2x. Значит, KCD таже равнобедренный и KC=CD. Из того, что AB=BK следует, что AB=BK<BC, то есть, AB - меньшая сторона параллелограмма. Значит, AD и BC - большие стороны параллелограмма, тогда AD=BC=14. Значит, 14=BC=BK+KC=AB+CD. Так как AB=CD, меньшая сторона параллелограмма равна 14/2=7.
- перпендикулярны
- точкой пересечения делятся пополам
Начертите ромб, проведите диагонали, по рис. будет видно, что диагонали делят ромб на четыре прямоугольных треугольника (поскольку диагонали ромба перпендикулярны). Рассмотрим один из них. Нам известно: сторона ромба, в прямоугольном треугольнике это гипотенуза, катет =5 см. (10:2).
Значит можем найти второй катет: а²=с²-b² a²=13²-5²=144=12²
Нашли половину второй диагонали, вся диагональ - 12*2=24
ответ: вторая диагональ 24 см.