ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ:
1) Из условия следует, что острыми являются углы B и D. Рассмотрим прямоугольные треугольники ABC и ADC. Используя условие, что сумма острых углов прямоугольного треугольника равна 90∘, получим: ∠BAC=49∘, а ∠DCA=56∘. Следовательно, ∠BAD=90+49=139∘, а ∠BCD=90+56=146∘ и он наибольший в четырехугольнике.
2)Так как AB=BC и AD=CD, то треугольники ABC и ADC являются равнобедренными, а углы при основании в равнобедренном треугольнике равны. ∠A=∠BAC+∠CAD. ∠BAC=12(180∘−∠B)=12(180∘−60∘)=60∘, ∠CAD=12(180∘−∠D)=12(180∘−110∘)=35∘. ∠A=∠BAC+∠CAD=60∘+35∘=95∘.
ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ:
1) Из условия следует, что острыми являются углы B и D. Рассмотрим прямоугольные треугольники ABC и ADC. Используя условие, что сумма острых углов прямоугольного треугольника равна 90∘, получим: ∠BAC=49∘, а ∠DCA=56∘. Следовательно, ∠BAD=90+49=139∘, а ∠BCD=90+56=146∘ и он наибольший в четырехугольнике.
2)Так как AB=BC и AD=CD, то треугольники ABC и ADC являются равнобедренными, а углы при основании в равнобедренном треугольнике равны. ∠A=∠BAC+∠CAD. ∠BAC=12(180∘−∠B)=12(180∘−60∘)=60∘, ∠CAD=12(180∘−∠D)=12(180∘−110∘)=35∘. ∠A=∠BAC+∠CAD=60∘+35∘=95∘.