Можно заметить, что высота трапеции равна средней линии, т.е. 10.
Площадь трапеции равна произведению высоты на среднюю линию, т.е. равна 100.
Площадь искомой фигуры равна половине площади трапеции, стало быть, равна 50 см2.
Теперь по пунктам: 1)Пусть АВСД трапеция. О - точка пересечения лиагоналей. М-середина меньшей диагонали , К - большей. Треугольники АОД и ВОС -прямоугольные равнобедренные. Их высоты равны половинам оснований. Сумма этих высот -высота трапеции. Значит высота равна средней линии.
2) Пусть средняя линия РЕ. Рассмотрим треугольник МЕД. Площадь этого треугольник равна четверти площади ВСД (т.к. МЕ его средняя линия). Также и площадь РАК четверть площади АВД. Их сумма четверть площади трапеции. Также и сумма площадей ВРМ и КЕД.
Сумма площадей всех перечисленных треугольников = половина площади трапеции. Но площадь искомой фигуры - это площадь трапеции без площадей этих четырех треугольников.
Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.
50 см2.
Объяснение: Извини , без рисунка.
Можно заметить, что высота трапеции равна средней линии, т.е. 10.
Площадь трапеции равна произведению высоты на среднюю линию, т.е. равна 100.
Площадь искомой фигуры равна половине площади трапеции, стало быть, равна 50 см2.
Теперь по пунктам: 1)Пусть АВСД трапеция. О - точка пересечения лиагоналей. М-середина меньшей диагонали , К - большей. Треугольники АОД и ВОС -прямоугольные равнобедренные. Их высоты равны половинам оснований. Сумма этих высот -высота трапеции. Значит высота равна средней линии.
2) Пусть средняя линия РЕ. Рассмотрим треугольник МЕД. Площадь этого треугольник равна четверти площади ВСД (т.к. МЕ его средняя линия). Также и площадь РАК четверть площади АВД. Их сумма четверть площади трапеции. Также и сумма площадей ВРМ и КЕД.
Сумма площадей всех перечисленных треугольников = половина площади трапеции. Но площадь искомой фигуры - это площадь трапеции без площадей этих четырех треугольников.