Радиус окружности описанной около правильного многоугольника равен 4 корней из 3, а сторона многоугольника равна 8. 1) найти радиус окружности вписанной в многоугольник 2) Количество сторон.
АВСД трапеция. ВС- меньшее основание. АВ = ВС = СД поскольку трапеция равнобокая и ее меньшее основание равно боковой стороне. АС - диагональ. Угол САД = 30 градусов. Это все по условию задачи. Решение. Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА. Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов. Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов. Угол АВС = 180 - 60 = 120 градусов. Поскольку трапеция равнобокая, то угол ВАД = СДА = 60 градусов угол АВС = ВСД = 120 градусов.
Решение Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.
Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.
Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,
< MPC = < PCM = < PCK,
где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.
Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.
Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.
Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,
< MPC = < PCM = < PCK,
где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и
PR = PM + MN + NR = MC + CD + ND = BC + CD.