Дано: АВСД -прямоугольник, АС и ВД - диагонали, КО⊥ВС, МО⊥АВ. КО=4 см, МО=9 см. Найти Р (АВСД).
Решение: диагонали прямоугольника в точке пересечения делятся пополам; отсюда АО=ОС; ВО=ОД.
Рассмотрим ΔАВС, где КО - средняя линия. АВ=2КО=4*2=8 см.
Рассмотрим ΔВАД, где МО - средняя линия. АД=2МО=9*2=18 см.
Р=2(АВ+АД)=2(8+18)=2*26=52 см.
ответ: 52 см.
3)
По свойству равнобедренного треугольника углы при его основании равны: ∠CAB = ∠CBA. С другой стороны, так как DF || BC, то по свойству параллельных прямых ∠CAB= ∠CBA=∠FDA,.Т.к. углы при основании треугольника AFD равны, то AF = FD.
Аналогично рассуждая, получаем, что и треугольник DEB равнобедренный, DE = BE.
Периметр параллелограмма равен сумме его сторон: P = DF + FC + CE + ED.
Учитывая, что DF = AF и ED = EB, запишем так: P = AF + FC + CE + EB.
Получаем P = (AF + FC) + (CE + EB) = АС + СВ = 10 + 10 = 20.
ответ: 20
4) Если угол 1 : угол 2 = 2:1, то угол 1 = 2х, угол 2 = х.
Сумма углов параллелограмма прилегающих к одной стороне равна 180°.
Так как любой внутренний угол квадрата равен 90 градусам. Диагональ квадрата проходит от противолежащих его углов друг к другу и делит квадрат на два равных треугольника. Треугольники получаются прямоугольными и равнобедренными Возьмем прямоугольно-равнобедренный треугольник и просчитаем градусы углов треугольника. Их сумма равна 180 градусов. Прямой угол треугольника равен 90 градусов. Из суммы углов треугольника вычитаем этот угол и останется 90 градусов на два других угла. Треугольник равнобедренный, => два оставшихся угла равны. Делим 90 градусов на 2 и получаем по 45 градусов каждый угол. Когда эти два треугольника "склеиваются" гипотенузами, получается квадрат. Гипотенуза любого из "склеившихся" треугольников становится диагональю этого квадрата. Углы по 45 градусов с одной стороны диагонали и с другой сложились и получились прямые углы квадрата, равные 90 градусам . А как сказано выше, в любом квадрате каждый внутренний его угол равен 90 градусов. А этой ситуации диагональ делит два противолежащих угла пополам, она будет являться его биссектрисой
Ниже
Объяснение:
1)
ответ: 20°
2)
Дано: АВСД -прямоугольник, АС и ВД - диагонали, КО⊥ВС, МО⊥АВ. КО=4 см, МО=9 см. Найти Р (АВСД).
Решение: диагонали прямоугольника в точке пересечения делятся пополам; отсюда АО=ОС; ВО=ОД.
Рассмотрим ΔАВС, где КО - средняя линия. АВ=2КО=4*2=8 см.
Рассмотрим ΔВАД, где МО - средняя линия. АД=2МО=9*2=18 см.
Р=2(АВ+АД)=2(8+18)=2*26=52 см.
ответ: 52 см.
3)
По свойству равнобедренного треугольника углы при его основании равны: ∠CAB = ∠CBA. С другой стороны, так как DF || BC, то по свойству параллельных прямых ∠CAB= ∠CBA=∠FDA,.Т.к. углы при основании треугольника AFD равны, то AF = FD.
Аналогично рассуждая, получаем, что и треугольник DEB равнобедренный, DE = BE.
Периметр параллелограмма равен сумме его сторон: P = DF + FC + CE + ED.
Учитывая, что DF = AF и ED = EB, запишем так: P = AF + FC + CE + EB.
Получаем P = (AF + FC) + (CE + EB) = АС + СВ = 10 + 10 = 20.
ответ: 20
4) Если угол 1 : угол 2 = 2:1, то угол 1 = 2х, угол 2 = х.
Сумма углов параллелограмма прилегающих к одной стороне равна 180°.
2х+х = 180°
3х = 180°
х = 180°:3 = 60° = угол 2.
угол 1 = 2х = 2*60° = 120°.
ответ: 60°, 120°.
Объяснение:
Так как любой внутренний угол квадрата равен 90 градусам. Диагональ квадрата проходит от противолежащих его углов друг к другу и делит квадрат на два равных треугольника. Треугольники получаются прямоугольными и равнобедренными Возьмем прямоугольно-равнобедренный треугольник и просчитаем градусы углов треугольника. Их сумма равна 180 градусов. Прямой угол треугольника равен 90 градусов. Из суммы углов треугольника вычитаем этот угол и останется 90 градусов на два других угла. Треугольник равнобедренный, => два оставшихся угла равны. Делим 90 градусов на 2 и получаем по 45 градусов каждый угол. Когда эти два треугольника "склеиваются" гипотенузами, получается квадрат. Гипотенуза любого из "склеившихся" треугольников становится диагональю этого квадрата. Углы по 45 градусов с одной стороны диагонали и с другой сложились и получились прямые углы квадрата, равные 90 градусам . А как сказано выше, в любом квадрате каждый внутренний его угол равен 90 градусов. А этой ситуации диагональ делит два противолежащих угла пополам, она будет являться его биссектрисой