В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Радиус окружности равен 1 см. чему равна длина окружности и пощадь круга?
а) с=3,14см;s=3,14см в квадрате
б)

Показать ответ
Ответ:
mayyyyyyka
mayyyyyyka
30.01.2021 14:20

– катеты; AB=c – гипотенуза.

Также в прямоугольном треугольнике сумма острых углов равна : .

Для прямоугольного треугольника также верна теорема Пифагора: .

Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.

Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника

Определение

Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе.

, .

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

, .

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.

, .

Связь катетов и гипотенузы, двух катетов через тригонометрические функции угла

С введённых понятий можно находить катеты или гипотенузу.

Например, из формулы: . Аналогично: .

Также можно получить формулу для связи длин двух катетов: .

Связь синуса и косинуса двух острых углов прямоугольного треугольника

При решении задач очень важно знать соотношения между синусом, косинусом и тангенсом острого угла прямоугольного треугольника.

Рассмотрим следующие две формулы: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Формула, связывающая тангенс с синусом и косинусом

Докажем теперь важную формулу, связывающую тангенс с синусом и косинусом:

Доказательство независимости значения тригонометрических функций от размеров треугольника

Доказательство

Запишем определение синуса и косинуса острого угла прямоугольного треугольника: , . Тогда: . Доказано.

Аналогично: .

Рассмотрим следующую важную задачу.

Задача

Даны прямоугольные треугольники . Кроме того, .

Доказать:.

Доказательство

(так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .

Отсюда получаем: .

.

.

Доказано.

Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.

Основное тригонометрическое тождество

Сформулируем и докажем одну из важнейших теорем, связывающих синус и косинус острого угла прямоугольного треугольника, – основное тригонометрическое тождество.

Основное тригонометрическое тождество: .

Примечание:

Доказательство

, тогда:  (при доказательстве мы пользовались теоремой Пифагора: ).

Доказано.

Рассмотрим пример, иллюстрирующий связь тригонометрических функций.

Решение примера

Дано:  – прямоугольный (), .

Найти:

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

ответ: .

На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Список литературы

Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.

Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фестиваль педагогических идей "Открытый урок" (Источник).

Xvatit.com (Источник).

Egesdam.ru (Источник).

Домашнее задание

№ 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .

Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур

0,0(0 оценок)
Ответ:
allknown
allknown
20.08.2020 16:42

1) 60/13

2) АD=13

3) 60√3

4) 120/13

Объяснение:

ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD

АО=0,5АС=0,5·10=5

DО=0,5ВD=0,5·24=12

АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13

2) АВ=ВС=СD=АD=13-сторона ромба

3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.

Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120

Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3

4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.

Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.

Ещё одна формула для нахождения площади ромба

S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13

1) Опустим из точки М перпедикуляр МТ на плоскость α.

МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.

АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)

Значить, ∠МЕT=(АВСD∧α)=30°

МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°

∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13

Растояние между ВD и пл.α и есть отрезок МТ=60/13

Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа

1-В

2-А

3-Б

4-Д


18б Буду очень признательна! Одна сторона ромба A B C D принадлежит плоскости α , а его диагонали ра
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота