сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
Проведем перепендикуляры к боковым сторонам. Образовалось 2 треугольника. Поскольку треугольник равнобедренный, то углы при основании равны. Поскольку у тебя дано, что расстояние берем от середины основания, то в двух этих новый маленьких треугольниках гипотенузы равны, так как равны эти половинки. Тогда, рассмотримм 2 маленьких треугольника. Они равны по двум углам (один - 90 градусов, второй - угол при основании равнобедренного треугольника) и стороне - гипотенузе. раз треугольники равны, значит равны и все их элементы. => равны и катеты, то есть перепендикуляры к боковым сторонам, а значит и расстония от середины до боковых сторон.
сечение пирамиды, проходящее через середины сторон ас, вс и ам, будет прямоугольником (это можно доказать, использовав теорему о трех перпендикулярах) .
площадь прямоугольника равна s = ab, где а, b - стороны прямоугольника.
одна из сторон этого прямоугольника будет средней линией треугольника авс и поэтому равна половине стороны ав, значит равна 3
другая сторона прямоугольника будет средней линией треугольника амс и поэтому равна половине стороны мс и равна 2
s = 3*2 = 6
так что площадь сечения будет 6 кв. ед. ))
Проведем перепендикуляры к боковым сторонам. Образовалось 2 треугольника. Поскольку треугольник равнобедренный, то углы при основании равны. Поскольку у тебя дано, что расстояние берем от середины основания, то в двух этих новый маленьких треугольниках гипотенузы равны, так как равны эти половинки. Тогда, рассмотримм 2 маленьких треугольника. Они равны по двум углам (один - 90 градусов, второй - угол при основании равнобедренного треугольника) и стороне - гипотенузе. раз треугольники равны, значит равны и все их элементы. => равны и катеты, то есть перепендикуляры к боковым сторонам, а значит и расстония от середины до боковых сторон.