Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
Площа прямої призми = площа основи*2 + периметр основи*висота.
В основі призми прямокутний трикутник. Його площа = катет1*катет2 /2. Периметр трикутника = сумма всіх сторін. В даному трикутнику відомі дві сторони. За теоремою Піфагора знайдемо гіпотенузу:
6*6+8*8 = 10*10
Гіпотенуза = 10 см
Отже, периметр = 10+6+8 = 24 см
площа = 8*6/2 = 48/2 = 24 кв.см
У прямій призмі бічні ребра перпендикулярні основі, тобто бічне ребро - висота призми.
Тепер площа пр. призми = 2*24 + 24*5 = 48+120 = 168 кв.см
Відповідь: 168 кв.см площа повної поверхні прямої призми.
1. Находим координаты вектора АD.
АD = (3-4; -1-1) = (-1;-2)
2. Находим координаты вектора ВС.
ВС = (-3+2; 1-3) = (-1;-2)
Если векторы имеют одинаковые координаты, то они равны. Значит, вектор АD равен вектору ВС.
Вычислите координаты вектора AC+2BC.
1. Находим координаты вектора АС.
АС=(-3-4; 1-1) = (-7; 0)
2. Находим координаты вектора ВС.
ВС=(-3+2; 1-3) = (-1; -2)
3. Находим координаты вектора 2ВС.
2ВС = 2(-1;-2) = (-2;-4)
4. Находим координаты вектора АС+2ВС.
АС+2ВС = (-7;0) + (-2;-4) = (-7-2; 0-4) = (-9;-4)
Вычислите абсолютную величину вектора BC.
|BC| = √((-1)²+(-2)²) = √(1+4) = √5