Радиус шара равен 13 см. Плоскость пересекает поверхность шара и площадь сечения равна 25п см^2. Найти площадь сферической поверхности меньшего из образовавшихся шаровых сегментов Рисунок тоже нужен
Сначала рассматриваем треугольники ВОС и АОД, ОД:ВО=10:15=2:3 и АО:СО=12:18=2:3 (для параллельности АО должно быть 12, а СО=18). Треугольники подобны по сторонам и углу между ними (угол ВОД=АОД - вертикальные). У подобных треугольников углы равны: угол СОВ=АОД и ДАО=ВСО. Первые углы образованы при пересечении прямых ВС и АД секущей ВД. вторые прмых ВС и АВ секущей АС. Равенство внутренних накрестлежащих углов - свойство параллельных прямых.
Из треугольников АОВ и ДОС аналогично доказываем АВ||СД .
Общее уравнение прямой в пространстве ax + by + cz + d = 0, где a,b,c, d -- числа.
Через любые две точки можно построить прямую и притом только одну. Допустим, что через точки A и B проходит прямая. Найдем ее уравнение: для этого подставим координаты в общее уравнение и найдем коэффициенты.
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*0 + c*0 + d = 0
a + d = 0
Подставляем в уравнение координаты точки и(1,2,2):
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*2 + c*2 + d = 0
a + 2b + 2c + d = 0
Объединим 2 полученных уравнения в систему и решим ее:
Пусть a = 1, b = 1, тогда d = -1, c = -1. Получаем уравнение прямой, проходящей через точки A и B:
1*x + 1*y -1*z - 1 = 0
x + y - z - 1 = 0.
Если точка C, лежит на одной прямой с точками A и B, то ее координаты должны удовлетворять полученному уравнению прямой. Проверим:
2 + 2 - 2 - 1 ≠ 0 ⇒ C не лежит на одной прямой с точками A и B
В С
О
А Д
Сначала рассматриваем треугольники ВОС и АОД, ОД:ВО=10:15=2:3 и АО:СО=12:18=2:3 (для параллельности АО должно быть 12, а СО=18). Треугольники подобны по сторонам и углу между ними (угол ВОД=АОД - вертикальные). У подобных треугольников углы равны: угол СОВ=АОД и ДАО=ВСО. Первые углы образованы при пересечении прямых ВС и АД секущей ВД. вторые прмых ВС и АВ секущей АС. Равенство внутренних накрестлежащих углов - свойство параллельных прямых.
Из треугольников АОВ и ДОС аналогично доказываем АВ||СД .
Нет
Объяснение:
Общее уравнение прямой в пространстве ax + by + cz + d = 0, где a,b,c, d -- числа.
Через любые две точки можно построить прямую и притом только одну. Допустим, что через точки A и B проходит прямая. Найдем ее уравнение: для этого подставим координаты в общее уравнение и найдем коэффициенты.
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*0 + c*0 + d = 0
a + d = 0
Подставляем в уравнение координаты точки и(1,2,2):
Подставляем в уравнение координаты точки A(1,0,0):
a*1 + b*2 + c*2 + d = 0
a + 2b + 2c + d = 0
Объединим 2 полученных уравнения в систему и решим ее:
Пусть a = 1, b = 1, тогда d = -1, c = -1. Получаем уравнение прямой, проходящей через точки A и B:
1*x + 1*y -1*z - 1 = 0
x + y - z - 1 = 0.
Если точка C, лежит на одной прямой с точками A и B, то ее координаты должны удовлетворять полученному уравнению прямой. Проверим:
2 + 2 - 2 - 1 ≠ 0 ⇒ C не лежит на одной прямой с точками A и B