В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Marcelyn
Marcelyn
06.04.2021 17:04 •  Геометрия

Радиусы двух окружностей имеющих общий центр,относятся как 2: 3. хоорда большей окружности касается меньшей окружности и равна 20 см, найти радиусы.

Показать ответ
Ответ:
1sanita
1sanita
01.10.2020 09:42
Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.
В нашем случае из одной точки А, лежащей на большей окружности проведена касательная АМ к меньшей окружности и секущая АВ, проходящая через общий центр О (окружности концентрические). Точка касания М делит хорду пополам значит АМ=10см. Тогда 10² = (R+r)*(R-r). Или 100=R^2-r^2. Но r = (2/3)*R. Подставляем и имеем 100=(5/9)*R^2.
Отсюда R = 6√5см, а r = 4√5см.

Или так: из прямоугольного треугольника ОМА по Пифагору имеем:
ОА^2-ОМ^2=АМ^2 или
R^2-r^2=100 или
(5/9)*R=100 
Отсюда R=6√5см. r=4√5 см.

Радиусы двух окружностей имеющих общий центр,относятся как 2: 3. хоорда большей окружности касается
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота