Основание параллелепипеда - квадрат, значит диагонали основания равны между собой и равны Do=а√2. Заметим, что малая диагональ сечения равна диагонали основания - как противоположные стороны прямоугольника, то есть dc=а√2. Значит сторона сечения тоже равна а√2 (так как острый угол ромба равен 60°, а это значит что треугольник, образованный сторонами ромба и его малой диагональю, равносторонний). Итак, b=а√2. Найдем большую диагональ сечения (ромба). Половина этой диагонали находится по Пифагору: Dc/2=√[b²-(d/2)²]=√[2a²-(2a²/4)]=√[2a²-(a²/2)]=√[(3a²/2)]=a√(3/2)=a√6/2. Тогда Dс=a√6. Найдем значение отрезка СС2 - расстояние, на котором плоскость сечения пересекает ребро параллелепипеда СС1. По Пифагору СС2=√(Dс²-Do²)=√(6a²-2a²)=2a. Угол между двумя пересекающимися плоскостями - это двугранный угол, образованный полуплоскостями и измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Тогда синус угла наклона плоскости сечения к плоскости основания (или угол между ними) равен отношению СС2 к большой диагонали сечения Dс, то есть угол наклона плоскости сечения к плоскости основания равен α=arcSin(2a/а√6) или α=arcSin (√6/3). Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Тогда угол наклона бокового ребра АА1 параллепипеда к плоскости сечения равен 90°- α. Но Sin(90-α)=Сosα, а Cosα=√(1-6/9)=√3/3. В силу параллельности всех боковых ребер параллелепипеда, они все наклонены к плоскости сечения под этим углом. Итак, угол наклона бокового ребра параллелепипеда к плоскости сечения равен arcCos(√3/3). Расстояние от точки О до плоскости сечения равно ОН= АО*Sinα=(а√2/2)*(√6/3)=а√3/3. Опустим перпендикуляр DD2 из точки D на плоскость сечения. Тогда DD2=OH=а√3/3. АD2 - это проекция ребра АD на плоскость сечения. Значит <D2AD - это угол между ребром АD и плоскостью сечения. Sin<(D2AD)=(DD2/AD)=(а√3/3)/a= √3/3. В силу симметричности ребер АD и АВ относительно диагонали АС основания и в силу попарной параллельности ребер обоих оснований, они все наклонены к плоскости сечения под этим углом. Итак, угол наклона ребер основания параллелепипеда к плоскости сечения равен arcSin(√3/3).
ответ: угол наклона боковых ребер параллелепипеда к плоскости сечения равен arcCos(√3/3). угол наклона ребер основания параллелепипеда к плоскости сечения равен arcSin(√3/3).
Есть 2 линии (прямые) как геометрическое место точек, равноудалённых от осей координат: у = х и у = -х. Отрезок, равный расстоянию от заданной точки (10; 0) находится на перпендикулярах к указанным прямым. Уравнения этих перпендикуляров: у = -х +10 и у = х - 10. Координаты искомых точек найдём как точки пересечения прямых: у = х и у = -х + 10. х = -х + 10. 2х = 10. х = 10/2 = 5. у = 5. у = -х и у = х - 10. -х = х - 10. 2х = 10. х = 10/2 = 5. у = -5.
Заметим, что малая диагональ сечения равна диагонали основания - как противоположные стороны прямоугольника, то есть dc=а√2.
Значит сторона сечения тоже равна а√2 (так как острый угол ромба равен 60°, а это значит что треугольник, образованный сторонами ромба и его малой диагональю, равносторонний).
Итак, b=а√2.
Найдем большую диагональ сечения (ромба). Половина этой диагонали находится по Пифагору:
Dc/2=√[b²-(d/2)²]=√[2a²-(2a²/4)]=√[2a²-(a²/2)]=√[(3a²/2)]=a√(3/2)=a√6/2.
Тогда Dс=a√6.
Найдем значение отрезка СС2 - расстояние, на котором плоскость сечения пересекает ребро параллелепипеда СС1.
По Пифагору СС2=√(Dс²-Do²)=√(6a²-2a²)=2a.
Угол между двумя пересекающимися плоскостями - это двугранный угол, образованный полуплоскостями и измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Тогда синус угла наклона плоскости сечения к плоскости основания (или угол между ними) равен отношению СС2 к большой диагонали сечения Dс, то есть угол наклона плоскости сечения к плоскости основания равен α=arcSin(2a/а√6) или α=arcSin (√6/3).
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
Тогда угол наклона бокового ребра АА1 параллепипеда к плоскости сечения равен 90°- α. Но Sin(90-α)=Сosα, а Cosα=√(1-6/9)=√3/3.
В силу параллельности всех боковых ребер параллелепипеда, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона бокового ребра параллелепипеда к плоскости сечения равен arcCos(√3/3).
Расстояние от точки О до плоскости сечения равно ОН= АО*Sinα=(а√2/2)*(√6/3)=а√3/3.
Опустим перпендикуляр DD2 из точки D на плоскость сечения. Тогда DD2=OH=а√3/3. АD2 - это проекция ребра АD на плоскость сечения.
Значит <D2AD - это угол между ребром АD и плоскостью сечения.
Sin<(D2AD)=(DD2/AD)=(а√3/3)/a= √3/3.
В силу симметричности ребер АD и АВ относительно диагонали АС основания и в силу попарной параллельности ребер обоих оснований, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона ребер основания параллелепипеда к плоскости сечения равен arcSin(√3/3).
ответ: угол наклона боковых ребер параллелепипеда к плоскости сечения равен
arcCos(√3/3).
угол наклона ребер основания параллелепипеда к плоскости сечения равен
arcSin(√3/3).
Отрезок, равный расстоянию от заданной точки (10; 0) находится на перпендикулярах к указанным прямым.
Уравнения этих перпендикуляров: у = -х +10 и у = х - 10.
Координаты искомых точек найдём как точки пересечения прямых:
у = х и у = -х + 10. х = -х + 10. 2х = 10. х = 10/2 = 5.
у = 5.
у = -х и у = х - 10. -х = х - 10. 2х = 10. х = 10/2 = 5.
у = -5.
ответ: 2 точки (5; 5) и (5; -5).