Расстояние между городами А и В равно 375 км. Город С находится между городами А и В. Из города А в город В выехал автомобиль, а через 1 час 30 минут следом за ним со скоростью 75 км/ч выехал мотоциклист, догнал автомобиль в городе С и повернул обратно. Когда он вернулся в А, автомобиль прибыл в В. Найдите расстояние от А до С.
Давайте разобьем данную ситуацию на несколько этапов и рассмотрим их по очереди.
1. Первый этап: автомобиль выезжает из города А в город В. По условию, расстояние между городами А и В равно 375 км. Мы не знаем скорость автомобиля, поэтому обозначим её за V_авто.
2. Второй этап: через 1 час 30 минут со скоростью 75 км/ч выезжает мотоциклист из города А в город В. Поездка мотоциклиста состоит из двух частей.
2.1. Первая часть: нахождение мотоциклиста в городе С, где он догоняет автомобиль. Обозначим расстояние от города А до города С за Х_смш, а время, прошедшее с момента начала пути автомобиля, до встречи с мотоциклистом в городе С, за t_смш. Так как мотоциклист движется со скоростью 75 км/ч и выезжает через 1 час 30 минут, то
t_смш = 1 ч 30 мин = 1,5 ч
(время измеряется в часах, чтобы быть согласованным со скоростью, выраженной в километрах в час).
Используя формулу расстояния, можно записать, что Х_смш = 75 * t_смш.
2.2. Вторая часть: поездка мотоциклиста обратно до города А. Поскольку расстояние от города С до города В составляет 375 - Х_смш (расстояние между городами А и В минус расстояние от города А до города С), а скорость мотоциклиста остается такой же (равной 75 км/ч), время этой части поездки можно найти, используя формулу расстояния: 375 - Х_смш = 75 * t_обратно, где t_обратно - время, затраченное мотоциклистом на обратный путь.
3. Третий этап: возвращение автомобиля в город В. С момента встречи мотоциклиста в городе С до прибытия автомобиля в город В прошло такое же время, как мотоциклист затратил на обратный путь до города А. Таким образом, это время равно t_обратно.
Итак, у нас есть два уравнения:
Х_смш = 75 * t_смш
375 - Х_смш = 75 * t_обратно
Нам нужно найти значение Х_смш.
Давайте найдем это значение. Подставим значение t_смш из первого уравнения во второе:
375 - (75 * t_смш) = 75 * t_обратно
Упростим это уравнение:
375 - 75 * t_смш = 75 * t_обратно
После преобразований получим:
t_обратно = (375 - 75 * t_смш) / 75
Теперь подставим это значение обратно в первое уравнение:
Х_смш = 75 * t_смш
После преобразований получим:
t_смш = Х_смш / 75
Теперь мы можем подставить это значение во второе уравнение:
375 - Х_смш = 75 * (Х_смш / 75)
Упростим это уравнение:
375 - Х_смш = Х_смш
После преобразований получим:
2 * Х_смш = 375
И, наконец, решим это уравнение:
Х_смш = 375 / 2
Х_смш = 187.5
Ответ: расстояние от города А до города С равно 187.5 км.