Пусть BC=a, AC=b, AB=c, P=a+b+c и r - радиус вписанной окружности. Тогда т.к. cos(ABC)=1/2, то по т. косинусов b²=a²+c²-aс. Кроме того, a²+c²=(a+c)²-2ac=(P-b)²-2ac, значит подставляя это в т. косинусов, получим b²=(P-b)²-2ac-aс, откуда ac=((P-b)²-b²)/3=(P-2b)P/3. Значит площадь S треугольника ABC равна S=(1/2)*ac*sin(60°)=(P-2b)P/(4√3)=P*r/2, откуда r=(P-2b)/(2√3)=(15-2·6)/(2√(3π))=√3/(2√π). Значит площадь вписанного круга равна π·r²=π·3/(4π)=3/4.
более короткий). Если обозначить через x,y,z отрезки на которые точки касания вписанной окружности разбивают стороны треугольника, то получим x+y+z=P/2 и x+y=b, откуда z=P/2-b. Т.к центр впис. окружности лежит на биссектрисе угла в 60 градусов, то r=z·ctg(30°)=(P-2b)/(2√3).
В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
Тогда т.к. cos(ABC)=1/2, то по т. косинусов b²=a²+c²-aс.
Кроме того, a²+c²=(a+c)²-2ac=(P-b)²-2ac, значит подставляя это в т. косинусов, получим b²=(P-b)²-2ac-aс, откуда ac=((P-b)²-b²)/3=(P-2b)P/3.
Значит площадь S треугольника ABC равна
S=(1/2)*ac*sin(60°)=(P-2b)P/(4√3)=P*r/2, откуда
r=(P-2b)/(2√3)=(15-2·6)/(2√(3π))=√3/(2√π).
Значит площадь вписанного круга равна π·r²=π·3/(4π)=3/4.
более короткий).
Если обозначить через x,y,z отрезки на которые точки касания вписанной окружности разбивают стороны треугольника, то получим x+y+z=P/2 и x+y=b, откуда z=P/2-b. Т.к центр впис. окружности лежит на биссектрисе угла в 60 градусов, то r=z·ctg(30°)=(P-2b)/(2√3).
SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК.
Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC.
Тр-ник ВОС равносторонний. СО=ВС=1.
ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2.
В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75.
В тр-ке SMO cosM=OM/SM=√3/(2√3.75).
sin²M=1-cos²M=1-3/15=12/15.
В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5.
В тр-ке СКО sin(КСО)=КО/СО=√15/5.
∠КСО=arcsin√15/5≈50.8° - это ответ.