Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
1. Основное правило существования треугольников: сумма двух любых сторон должна быть больше, чем третья сторона (если нарисовать треугольник, это хорошо видно. Крайний случай, когда один из углов треугольника почти равен 180 град).
Из этого правила.
Возьмем проволоки 4, 7 и 13 cм. Тогда
4+7=11 < 13 (т.е. сумма сторон меньше 3ей, поэтому такого треугольника быть не может)
Возьмем проволоки 4, 7, 10. Тогда
4+7=11 > 10
7+10=17 > 4
4+10=14 > 7
Правило выполняется для любой из сторон, следовательно треугольник существует.
Из проволок можно собрать еще 2 треугольника
{4,10,13}, {7,10,13}, но для них правило выполняется, значит они существуют. Рисунки 2х прикрепил к ответу
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Объяснение:
4,7,10,13 см длины проволок.
1. Основное правило существования треугольников: сумма двух любых сторон должна быть больше, чем третья сторона (если нарисовать треугольник, это хорошо видно. Крайний случай, когда один из углов треугольника почти равен 180 град).
Из этого правила.
Возьмем проволоки 4, 7 и 13 cм. Тогда
4+7=11 < 13 (т.е. сумма сторон меньше 3ей, поэтому такого треугольника быть не может)
Возьмем проволоки 4, 7, 10. Тогда
4+7=11 > 10
7+10=17 > 4
4+10=14 > 7
Правило выполняется для любой из сторон, следовательно треугольник существует.
Из проволок можно собрать еще 2 треугольника
{4,10,13}, {7,10,13}, но для них правило выполняется, значит они существуют. Рисунки 2х прикрепил к ответу