Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
№1
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Этот вариант невозможен.
ответ: периметр 29 см
Хх все
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам