(Обозначения: E- середина AB, AF - высота к стороне BC, BD - медиана к стороне AC) 1) BD - медиана, высота и биссектриса (т.к. AB=BC), значит, AD=DC=5 В треугольнике ABD BD=√(AB∧2+AD∧2)=√(169-25)=12 BM=2/3 BD, BD=8 2) В треугольнике ABD AD/AB=O1D/O1B=5/13 O1B=13/18 BD=26/3 3 )ΔABD≈ΔOBE AB/BO=BD/BE 13/BO=12/6.5 (BE=AE=13/2=6.5) BO=(6.5*13)/12=169/24 4)cos C=DC/BC=5/13 В треугольнике AFC cos C=FC/AC⇒AC*5/13=50/13 BF=BC-CF=13-50/13=50/13 ΔABD≈ΔHBF; AB/BH=BD/BF⇒BH=(13*119)/13*12=119/12. P.S.(≈ - подобие треугольников)
Трапеция ABCD: BC║AD; BC = 12 см; AD = 24 см Описать окружность можно только около равнобедренной трапеции ⇒ AB = CD = 6√10 см Провести две высоты BK⊥AD и CM⊥AD: KM = BC = 12 см AK = MD = (AD - KM)/2 = (24 - 12)/2 = 6 см
ΔCMD: ∠CMD = 90°; MD = 6 см; CD = 6√10 см. Теорема Пифагора CM² = CD² - MD² = (6√10)² - 6² = 360 - 36 = 324 CM = √324 = 18 см
ΔACM: ∠AMC = 90°; CM = 18 см; AM = 6+12 = 18 см ⇒ CM = AM ⇒ ∠CAM = ∠ACM = 90°/2 = 45°
Окружность, которая описана около трапеции, описана и около ΔACD. Теорема синусов:
1) BD - медиана, высота и биссектриса (т.к. AB=BC), значит, AD=DC=5
В треугольнике ABD BD=√(AB∧2+AD∧2)=√(169-25)=12
BM=2/3 BD, BD=8
2) В треугольнике ABD AD/AB=O1D/O1B=5/13
O1B=13/18 BD=26/3
3 )ΔABD≈ΔOBE
AB/BO=BD/BE
13/BO=12/6.5 (BE=AE=13/2=6.5)
BO=(6.5*13)/12=169/24
4)cos C=DC/BC=5/13
В треугольнике AFC cos C=FC/AC⇒AC*5/13=50/13
BF=BC-CF=13-50/13=50/13
ΔABD≈ΔHBF; AB/BH=BD/BF⇒BH=(13*119)/13*12=119/12.
P.S.(≈ - подобие треугольников)
Описать окружность можно только около равнобедренной трапеции ⇒
AB = CD = 6√10 см
Провести две высоты BK⊥AD и CM⊥AD:
KM = BC = 12 см
AK = MD = (AD - KM)/2 = (24 - 12)/2 = 6 см
ΔCMD: ∠CMD = 90°; MD = 6 см; CD = 6√10 см. Теорема Пифагора
CM² = CD² - MD² = (6√10)² - 6² = 360 - 36 = 324
CM = √324 = 18 см
ΔACM: ∠AMC = 90°; CM = 18 см; AM = 6+12 = 18 см ⇒
CM = AM ⇒ ∠CAM = ∠ACM = 90°/2 = 45°
Окружность, которая описана около трапеции, описана и около ΔACD.
Теорема синусов:
ответ: радиус описанной окружности равен 6√5 см