Для того чтобы вычислить площадь правильного многоугольника его разбивают на равные треугольники с общей вершиной в центре вписанной окружности. А площадь правильного многоугольника равна произведению его полупериметра на радиус вписанной окружности правильного многоугольника1. S= r·p=12 r·n·an — число сторон правильного многоугольникаp — полупериметр правильного многоугольникаa — сторона правильного многоугольникаr — радиус вписанной окружности правильного многоугольника 2. S=n·a24·tg(360°2n) Ну вроде такие формулы.
1) 36 кв. ед. - площадь осевого сечения конуса.
2) 45π кв. ед. - площадь боковой поверхности усеченного конуса.
Объяснение:
Дано: усеченный конус, r=3, R=6, h=4.
Найти: 1) площадь осевого сечения; 2) площадь боковой поверхности конуса.
1) Осевым сечением усеченного конуса является равнобедренная трапеция.
Назовем ее АВСМ.
ВС=2r = 2*3=6.
АМ = 2R = 2*6 = 12.
2) Площадь боковой поверхности усеченного конуса вычисляется по формуле
, где r и R - радиусы оснований конуса, l - образующая конуса.
В нашем случае l=АВ=СМ.
В равнобедренной трапеции проведем высоты ВН и СН₁.
НН₁СВ - прямоугольник. ВС = НН₁ = 6.
АН=АН₁ = (АМ-НН₁)/2=(12-6)/2=3.
ВН=ОК=4.
ΔАВН - прямоугольны. По теореме Пифагора находим гипотенузу АВ.
2. S=n·a24·tg(360°2n)
Ну вроде такие формулы.