Рассмотрите рисунки с изображением климатограмм, построенных по данным метеонаблюдения в разных частях Земли, и таткотинете чадвакие Определите, к какому климатическому поясу соответствует
1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.
Если продолжить KL и MN то эти линии пересекутся на продолжении ребра B1C1 в точке, которую обозначим O. Рассмотрим положение этой точки в плоскости грани BCC1B1. Легко увидеть, что C1O равна половине длины ребра куба. Аналогичное наблюдение можно сделать и из анализа грани A1B1C1D1. Из симметрии следует что треугольник ONL - равнобедренный с основанием NL. Длина этого основания по теореме Пифагора равна корень(a*a+a*a)/2 = a/корень(2). Длины боковых сторон так-же a/корень(2). То есть треугольник равносторонний, а искомый угол при его вершине 60 градусов.
См. Объяснение
Объяснение:
Задание
Прочти высказывания и оцени их верность.
1) Площадь параллелограмма равна полусумме его оснований —
2) Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета —
3) Площадь квадрата равна квадрату его высоты —
4) Высота трапеции равна её площади, делённой на среднюю линию —
Решение
1) "Площадь параллелограмма равна полусумме его оснований" — неправильно; площадь параллелограмма равна произведению одной из его сторон на высоту, проведённую к этой стороне.
2) "Высота прямоугольного треугольника равна корню из разности квадрата его гипотенузы и квадрата его второго катета" — в данном случае приведена формула вычисления одного из катетов; если принять один из катетов за основание, а второй за высоту, то, в частности, с этим утверждением можно было бы согласиться, но ведь кроме катетов в треугольнике есть ещё и гипотенуза, высота к которой проводится из вершины прямого угла, и в отношении высоты, проведенной к гипотенузе, такая формула неприменима; поэтому ответ - неправильно.
3) "Площадь квадрата равна квадрату его высоты" — площадь квадрата равна квадрату его стороны, а понятия "высоты квадрата" нет; ответ - неправильно.
4) "Высота трапеции равна её площади, делённой на среднюю линию" - да, так можно утверждать; если площадь трапеции равна произведению средней линии на высоту, то из этого следует, что делением площади на среднюю линию мы получаем высоту трапеции; ответ - правильно.