Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано). <MCL=90°, как угол между биссектрисами двух смежных углов (свойство). Значит <CLM=45° (так как CL=CM - дано). Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения: 2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°. Проведем через точку А диаметр АК описанной окружности. Тогда <АСК=90°, как угол, опирающийся на диаметр. <AКC=180°-<AВC, так как опираются на одну хорду. <KAC=180°-<ACK-<AKC или <KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°. То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны. Отсюда КС=ВС=5, как хорды, стягивающие равные дуги. Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13. Это диаметр. Значит радиус описанной окружности равен 6,5. ответ: R=6,5.
1. Внешний угол равен сумме углов, не смежных с ним. Но также смежные углы равны 180°, а в условии было сказано, что этот внешний угол смежен с углом Б. Сумма смежных углов равна 180° => угол Б = 180° - 150° = 30°.
2. Угол А равен 180° - 30° - 90° (сумма всех углов треугольника равна 180°) = 60°.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы. Гипотенузой является сторона БС (на моем чертеже угол А = 90°, катет, который как бы горизонтальный - АС, "вертикальный" - АБ).
Пусть x - это сторона АС, тогда БС - это 2х.
4. В условии было дано, что СБ-АС = 10. Подставим значения. 2х-х=10. Х = 10. АС = 10, СБ = 20
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.
2. Угол А равен 180° - 30° - 90° (сумма всех углов треугольника равна 180°) = 60°.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы. Гипотенузой является сторона БС (на моем чертеже угол А = 90°, катет, который как бы горизонтальный - АС, "вертикальный" - АБ).
Пусть x - это сторона АС, тогда БС - это 2х.
4. В условии было дано, что СБ-АС = 10. Подставим значения. 2х-х=10. Х = 10. АС = 10, СБ = 20