Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
∠CBD=∠BDA- внутренние накрест лежащие при параллельных BC и AD и секущей BD ∠BCA=∠CAD- внутренние накрест лежащие при параллельных BC и AD и секущей AC
Треугольники BMC и DAM подобны по двум углам
По теореме Пифагора АС²=10²+16²=100+256=356 АС=2√89
По теореме Пифагора BD²=AB²+AD²=10²+24²=100+576=676 BD=26
Из подобия треугольников BMC и DAM следует пропорциональность сторон BM: MD=BC:AD BM:(26-BM)=16:24 16·(26-BM)=24BM 40BM=416 BM=10,4 MD=26-10,4=15,6
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
∠BCA=∠CAD- внутренние накрест лежащие при параллельных BC и AD и секущей AC
Треугольники BMC и DAM подобны по двум углам
По теореме Пифагора
АС²=10²+16²=100+256=356
АС=2√89
По теореме Пифагора
BD²=AB²+AD²=10²+24²=100+576=676
BD=26
Из подобия треугольников BMC и DAM следует пропорциональность сторон
BM: MD=BC:AD
BM:(26-BM)=16:24
16·(26-BM)=24BM
40BM=416
BM=10,4
MD=26-10,4=15,6
CM: MA=BC:AD
CM:(2√89 - CM)=16:24
16·(2√89 - CM)=24·CM
40·CM=32·√89
CM=0,4·√89
MA=√89 - 0,4·√89 = 0,6·√89
Р(Δ MAD)=MA+AD+DM=0,6√89+24+15,6=39,6+0,6·√89=0,6·(66+√89)=