Расстояние от середины большего основания равнобедренной трапеции до вершины тупого угла равно меньшему основанию, а большее основание в 2 раза больше, чем меньшее. Вычисли периметр трапеции, если длина меньшего основания равна 11 см.
Плоскость, проходящая через средние линии будет параллельна боковой грани призмы, по паре параллельных прямых. Значит фигура бкдет разделена на две - треугольную призму и четырехугольную с трапецией в основании. Причем, высоты призм одинаковы и равны H.
Далее задача сводится к нахождению отношения оснований треугольной и трапецивидной призмы, а точнее отношению площадей их оснований - треугольника и трапеции.
Построить прямоугольный треугольник с углом, равным А, и высотой, равной СН.
1) Из вершины А данного угла произвольным раствором циркуля делаем насечки М и Т на его сторонах .Соединим МТ.
2) На произвольной прямой а отмечаем т.А и тем же раствором циркуля проводим из нее, как из центра, полуокружность. Точку пересечения полуокружности и прямой обозначим Т'.
3) Циркулемм раствором, равным отрезку ТМ, из точки Т' делаем насечку на полуокружности в т.М' . Проведем прямую через точки А и M'.
Данный угол построен..
4) На прямой а выбираем произвольно точку О, отмечаем по обе стороны от нее на равном расстоянии т.1 и т.2. Из этих точек, как из центров, строим полуокружности так, чтобы они пересеклись по обе стороны от прямой а. Точки их пересечения соединяем прямой. Мы построили общеизвестным прямую, перпендикулярную прямой а
5) Таким же образом восстанавливаем перпендикулярную прямую через т. А. На обеих перпендикулярных прямых отмечаем т.К и т.Е на расстоянии от прямой а, равном длине высоты СН, и соединяем их. Прямая КЕ параллельна прямой АО - её точки находятся на равном расстоянии от а.
6)Точка пересечения КЕ со стороной построенного угла А - вершина С прямого угла искомого треугольника. С циркуля от А откладываем на второй стороне угла расстояние АН=КС.
Соединим С и Н. Высота построена.
По тому же как построены перпендикулярные прямые к т.О и т.А, построим прямой угол в т. С.
7) Прямую, соединяющую точки пересечения полуокружностей, продлим до пересечения с прямой а, и обозначим точку пересечения В. Это вершина второго острого угла искомого треугольника, а АВ - его гипотенуза.
В треугольнике АВС угол САВ равен данному, угол АСВ - прямой по построению, высота СН равна данной. Искомый треугольник построен..
1. объемы до и после распила одинаковые
V=n*v
v=1/4a*1/4b*1/4c
2. тоже самое
3.Vтр призмы=Sтр основания*H
Плоскость, проходящая через средние линии будет параллельна боковой грани призмы, по паре параллельных прямых. Значит фигура бкдет разделена на две - треугольную призму и четырехугольную с трапецией в основании. Причем, высоты призм одинаковы и равны H.
Далее задача сводится к нахождению отношения оснований треугольной и трапецивидной призмы, а точнее отношению площадей их оснований - треугольника и трапеции.
Даны: острый угол А и отрезок СН.
Построить прямоугольный треугольник с углом, равным А, и высотой, равной СН.
1) Из вершины А данного угла произвольным раствором циркуля делаем насечки М и Т на его сторонах .Соединим МТ.
2) На произвольной прямой а отмечаем т.А и тем же раствором циркуля проводим из нее, как из центра, полуокружность. Точку пересечения полуокружности и прямой обозначим Т'.
3) Циркулемм раствором, равным отрезку ТМ, из точки Т' делаем насечку на полуокружности в т.М' . Проведем прямую через точки А и M'.
Данный угол построен..
4) На прямой а выбираем произвольно точку О, отмечаем по обе стороны от нее на равном расстоянии т.1 и т.2. Из этих точек, как из центров, строим полуокружности так, чтобы они пересеклись по обе стороны от прямой а. Точки их пересечения соединяем прямой. Мы построили общеизвестным прямую, перпендикулярную прямой а
5) Таким же образом восстанавливаем перпендикулярную прямую через т. А. На обеих перпендикулярных прямых отмечаем т.К и т.Е на расстоянии от прямой а, равном длине высоты СН, и соединяем их. Прямая КЕ параллельна прямой АО - её точки находятся на равном расстоянии от а.
6)Точка пересечения КЕ со стороной построенного угла А - вершина С прямого угла искомого треугольника. С циркуля от А откладываем на второй стороне угла расстояние АН=КС.
Соединим С и Н. Высота построена.
По тому же как построены перпендикулярные прямые к т.О и т.А, построим прямой угол в т. С.
7) Прямую, соединяющую точки пересечения полуокружностей, продлим до пересечения с прямой а, и обозначим точку пересечения В. Это вершина второго острого угла искомого треугольника, а АВ - его гипотенуза.
В треугольнике АВС угол САВ равен данному, угол АСВ - прямой по построению, высота СН равна данной. Искомый треугольник построен..