Расстояние от середины отрезка ab, пересекающего плоскость альфа, до плоскости альфа равно 14см, а расстояние от точки a до плоскости альфа равно 32 см. найдите расстояние от середины отрезка b до плоскости альфа
task/24715096 ---.---.---.---.---.---- Квадрат имеет стороны 12. Середина стороны BC обозначена как K, а точка P - пересечения AK и BD. Найдите площадь треугольника BKP. ==================================================== рис прикреплен S(BPK) =BK*PF/2 , но BK =BC/2 =12/2 =6 ; S(BPK) =6*PF/2 =3*PF остается найти высоту PF ( PF⊥ BC) ∆ BPK ~∆DPA (первый признак подобия ) ∠PBK = ∠PDA и ∠PKB = ∠PAD как накрест лежащие углы * * * еще ∠BPK = ∠DPA как вертикальные углы * * * PF / PE = BK / DA ; (высоты пропорциональны соответствующим сторонам_коэфф.подобия) PF / PE =1/2 ⇒ PE=2BF с другой стороны PE+PF = AD =12 2PF+PF =12 ; 3PF =12 ; PF = 3. Следовательно S(BPK) =3*3 = 9.
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
---.---.---.---.---.----
Квадрат имеет стороны 12. Середина стороны BC обозначена как K, а точка P - пересечения AK и BD. Найдите площадь треугольника BKP.
====================================================
рис прикреплен
S(BPK) =BK*PF/2 , но BK =BC/2 =12/2 =6 ;
S(BPK) =6*PF/2 =3*PF
остается найти высоту PF ( PF⊥ BC)
∆ BPK ~∆DPA (первый признак подобия )
∠PBK = ∠PDA
и
∠PKB = ∠PAD как накрест лежащие углы
* * * еще ∠BPK = ∠DPA как вертикальные углы * * *
PF / PE = BK / DA ;
(высоты пропорциональны соответствующим сторонам_коэфф.подобия)
PF / PE =1/2 ⇒ PE=2BF с другой стороны PE+PF = AD =12
2PF+PF =12 ; 3PF =12 ; PF = 3.
Следовательно S(BPK) =3*3 = 9.
ответ : 9 кв. единиц .
ВМ=МС=а
AN=ND=b (это обозничили мы так)
треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже.
но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD
что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)