Расстояние от середины стороны AB равнобедренного треугольника ABC( AB=BC) до стороны AC равно 9 см. Найдите расстояние от вершины B до точки пересечения медиан треугольника ABC
1) Сторона, лежащая напротив угла 30°, равна половине гипотенузы (это такая теорема или как их там называют, крч в учебнике есть). Поэтому, 15:2=7,5. ответ: 7,5см
2) Если внешний угол равен 120°, то внутренний, т.е. один из углов треугольника, равен: 180(суммарный угол смежных углов)-120=60°. Сумма всех углов треугольника, как правило, равна 180°. Нам известно, что второй угол прямой(90=). Тогда третий угол равен: 180-90-60=30°. Дальше используем ту же теорему, что и в первом задании, только на этот раз известна не гипотенуза, а сторона, тогда: 4×2=8. ответ: 8см
Объяснение:
1) Сторона, лежащая напротив угла 30°, равна половине гипотенузы (это такая теорема или как их там называют, крч в учебнике есть). Поэтому, 15:2=7,5. ответ: 7,5см
2) Если внешний угол равен 120°, то внутренний, т.е. один из углов треугольника, равен: 180(суммарный угол смежных углов)-120=60°. Сумма всех углов треугольника, как правило, равна 180°. Нам известно, что второй угол прямой(90=). Тогда третий угол равен: 180-90-60=30°. Дальше используем ту же теорему, что и в первом задании, только на этот раз известна не гипотенуза, а сторона, тогда: 4×2=8. ответ: 8см
Площадь боковой поверхности равна 756 дм².
Площадь полной поверхности равна 1145 дм².
Объяснение:
Площадь боковой стороны усеченной пирамиды равна площади равнобочной трапеции с основаниями 17 и 10 дм и высотой, равной апофеме 14 дм.
дм².
В площади боковой стороны таких трапеций четыре.
Значит
дм².
Площадь полной поверхности равна сумме площади боковой поверхности и площадей оснований.
Площадь меньшего основания равна площади квадрата со стороной 10 дм
дм².
Площадь большего основания равна площади квадрата со стороной 17 дм
дм².
Теперь надо сложить все эти три площади
дм².